Advertisement

Hyperfine Interactions

, 240:23 | Cite as

The concept of laser-based conversion electron Mössbauer spectroscopy for a precise energy determination of 229mTh

  • Lars C. von der WenseEmail author
  • Benedict Seiferle
  • Christian Schneider
  • Justin Jeet
  • Ines Amersdorffer
  • Nicolas Arlt
  • Florian Zacherl
  • Raphael Haas
  • Dennis Renisch
  • Patrick Mosel
  • Philip Mosel
  • Milutin Kovacev
  • Uwe Morgner
  • Christoph E. Düllmann
  • Eric R. Hudson
  • Peter G. Thirolf
Article
Part of the following topical collections:
  1. Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Abstract

229Th is the only nucleus currently under investigation for the development of a nuclear optical clock (NOC) of ultra-high accuracy. The insufficient knowledge of the first nuclear excitation energy of 229Th has so far hindered direct nuclear laser spectroscopy of thorium ions and thus the development of a NOC. Here, a nuclear laser excitation scheme is detailed, which makes use of thorium atoms instead of ions. This concept, besides potentially leading to the first nuclear laser spectroscopy, would determine the isomeric energy to 40 μeV resolution, corresponding to 10 GHz, which is a 104 times improvement compared to the current best energy constraint. This would determine the nuclear isomeric energy to a sufficient accuracy to allow for nuclear laser spectroscopy of individual thorium ions in a Paul trap and thus the development of a single-ion nuclear optical clock.

Keywords

Nuclear optical clock Nuclear laser spectroscopy Thorium-229 

Notes

Acknowledgements

We would like to thank S. Stellmer and T. Schumm for discussions and lending of the VUV excimer laser. For discussions we are also grateful to G. Kazakov, A. Pálffy, J. Weitenberg and E. Peik. This work was supported by DFG (Th956/3-2) and by the European Union’s Horizon 2020 research and innovation programme under grant agreement 6674732 ”nuClock”. The efforts at UCLA have been supported in part by DARPA (QuASAR program), ARO (W911NF-11-1-0369), NSF (PHY-1205311), NIST PMG (60NANB14D302), RCSA (20112810), and DOE Office of Nuclear Physics, Isotope Programme.

References

  1. 1.
    Ludlow, A.D., et al.: Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Huntemann, N., et al.: Single ion atomic clock with 3 ⋅10− 18 systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Chen, J.S., et al.: Sympathetic ground state cooling and time dilation shifts in an 27al+ optical clock. Phys. Rev. Lett. 118, 053002 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Nicholson, T.L., et al.: Systematic evaluation of an atomic clock at 2 ⋅10− 18 total uncertainty. Nat. Commun. 6, 6896 (2015)CrossRefGoogle Scholar
  5. 5.
    McGrew, W.F., et al.: Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Peik, E., Tamm, C.: Nuclear laser spectroscopy of the 3.5 eV transition in 229Th. Eur. Phys. Lett. 61, 181 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Campbell, C.J., et al.: Single ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Borisyuk, P.V., et al.: Trapping, retention and laser cooling of th3+ ions in a multisection linear quadrupole trap. Quantum Electron. 47, 406–411 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Thielking, J., et al.: Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Rellergert, W.G., et al.: Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Kazakov, G.A., et al.: Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Jeet, J., et al.: Direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition. Phys. Rev. Lett. 114, 253001 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Borisyuk, P.V., et al.: Experimental studies of thorium ion implantation from pulse laser plasma into thin silicon oxide layers. Laser Phys. Lett. 15, 056101 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Stellmer, S., et al.: Attempt to optically excite the nuclear isomer in 229Th. Phys. Rev. A 97, 062506 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Beck, B.R., et al.: Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Beck, B.R., et al.: Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh LLNL-PROC-415170 (2009)Google Scholar
  17. 17.
    Minkov, N., Pálffy, A.: Reduced transition probabilities for the gamma decay of the 7.8 eV isomer in 229Th. Phys. Rev. Lett. 118, 212501 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Tkalya, E.V., et al.: Radiative lifetime and energy of the low-energy isomeric level in 229Th. Phys. Rev. C 92, 054324 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Tkalya, E.V., et al.: Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 298–299 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    von der Wense, L., et al.: Towards a 229Th-based nuclear clock. Meas. Tech. 60, 1178 (2018)CrossRefGoogle Scholar
  21. 21.
    Kazakov, G.A., et al.: Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter. Nucl. Instrum. Meth. Phys. Res. A 735, 229 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    von der Wense, L., et al.: Direct detection of the 229Th nuclear clock transition. Nature 533, 47 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Seiferle, B., et al.: Lifetime measurement of the 229Th nuclear isomer. Phys. Rev. Lett. 118, 042501 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Seiferle, B., et al.: Feasibility study of internal conversion electron spectroscopy of 229mTh. Eur. Phys. J. A 53, 108 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Seiferle, B., et al.: Towards a precise determination of the excitation energy of the Thorium nuclear isomer using a magnetic bottle spectrometer, submitted to. Eur. Phys. Jour. A, (2018). arXiv:1812.04621
  26. 26.
    Natarajan, C.M., et al.: Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    von der Wense, L., et al.: A laser excitation scheme for 229mTh. Phys. Rev. Lett. 119, 132503 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Karpeshin, F.F., Trzhaskovskaya, M.B.: Impact of the electron environment on the lifetime of the 229Thm low-lying isomer. Phys. Rev. C 76, 054313 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Varga, Z., et al.: Determination of the 229Th half-life. Phys. Rev. C 89, 064310 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979)CrossRefGoogle Scholar
  31. 31.
    Revière, J.C.: The work function of thorium. Proc. Phys. Soc. 80, 1 (1962)CrossRefGoogle Scholar
  32. 32.
    Haas, R., et al.: Development and characterization of a drop-on-demand inkjet printing system for nuclear target fabrication. Nucl. Instrum. Meth. A 874, 43 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Zimmermann, K.: Experiments towards optical nuclear spectroscopy with Thorium-229. PhD Thesis, Leibniz University Hannover (2010)Google Scholar
  34. 34.
    Hanna, S.J., et al.: A new broadly tunable (7.4-10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry. Int. J. Mass Spectrom. 279, 134 (2009)CrossRefGoogle Scholar
  35. 35.
    Ng, C.-Y.: Spectroscopy and dynamics of neutrals and ions by high-resolution infrared-vacuum ultraviolet photoionization and photoelectron methods, Chapter 19 in Frontiers of Molecular Spectroscopy, pp. 659–691 (2009)Google Scholar
  36. 36.
    Kajava, T.T., et al.: Mode structure fluctuations in a pulsed dye laser. Appl. Opt. 31, 6987–6992 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    Goruganthu, R.R., Wilson, W.G.: Relative electron detection efficiency of microchannel plates from 0-3 keV. Rev. Sci. Instrum. 55, 2030 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    Arlt, N.: Preparatory measurements for a direct laser excitation of 229mTh, Bachelor Thesis, Ludwig-Maximilians-University of Munich, Germany. Online available at Zenodo.  https://doi.org/10.5281/zenodo.1346638 (2017)
  39. 39.
    von der Wense, L.: On the Direct Detection of 229mTh. Springer, Berlin (2018)CrossRefGoogle Scholar
  40. 40.
    Wandkowski, N., et al.: Modeling of electron emission processes accompanying radon-α-decays within electrostatic spectrometers. New. J. Phys. 15, 083040 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Mehlstäubler, T.E., et al.: Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    Flambaum, V.V.: Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lars C. von der Wense
    • 1
    Email author
  • Benedict Seiferle
    • 1
  • Christian Schneider
    • 2
  • Justin Jeet
    • 2
  • Ines Amersdorffer
    • 1
  • Nicolas Arlt
    • 1
  • Florian Zacherl
    • 1
  • Raphael Haas
    • 3
    • 4
    • 5
  • Dennis Renisch
    • 3
    • 4
  • Patrick Mosel
    • 6
  • Philip Mosel
    • 6
  • Milutin Kovacev
    • 6
  • Uwe Morgner
    • 6
  • Christoph E. Düllmann
    • 3
    • 4
    • 5
  • Eric R. Hudson
    • 2
  • Peter G. Thirolf
    • 1
  1. 1.Ludwig-Maximilians-Universität MünchenGarchingGermany
  2. 2.University of CaliforniaLos AngelesUSA
  3. 3.Johannes Gutenberg-Universität MainzMainzGermany
  4. 4.Helmholtz-Institut MainzMainzGermany
  5. 5.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  6. 6.Leibniz Universität HannoverHannoverGermany

Personalised recommendations