Hyperfine Interactions

, 240:14 | Cite as

Gravitational and matter-wave spectroscopy of atomic hydrogen at ultra-low energies

  • Sergey VasilievEmail author
  • Janne Ahokas
  • Jarno Järvinen
  • Valery Nesvizhevsky
  • Alexei Voronin
  • François Nez
  • Serge Reynaud
Open Access
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018


We propose experiments with atomic hydrogen gas at ultra-low temperatures T < 100μK when the thermal energy of atoms is comparable with the changes of their potential energy in the Earth gravity field. At these conditions we suggest implementing a gravitational spectroscopy for studies of quantum properties of ultra-cold atomic hydrogen and its interactions with matter and gravity, similar to experiments with ultra-cold neutrons (Nesvizhevsky et al. Nature 415, 297 2002). A magnetic trap used for reaching the Bose-Einstein Condensation (Fried et al. Phys. Rev. Lett. 81, 3811 1998) can be used for cooling a large number of H atoms below 1 mK. Evaporative cooling over the trap barrier allows effective cooling of the vertical degree of freedom of the trapped atoms. Releasing these ultra-slow atoms from the trap onto the cold surface of superfluid helium will allow studies of quantum bounces and stationary gravitational states of H atoms in the potential well created by this surface and the field of Earth gravity. Experimental study of properties of gravitational quantum states of hydrogen and quantum reflection of ultracold hydrogen from surface would be of major importance for designing similar experiments with antihydrogen, which are currently prepared in CERN.


Atomic hydrogen BEC Quantum reflection 



Open access funding provided by University of Turku (UTU) including Turku University Central Hospital. This work was supported by the Wihuri Foundation and grant of the Academy of Finland 317141. The authors are grateful to colleagues from GRANIT and GBAR collaborations for useful and stimulating discussions.


  1. 1.
    Nesvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Fried, D.G., et al.: Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Davis, K.B., Mewes, M.O., Andrews, M.R., Van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Safonov, A., et al.: Observation of quasicondensate in two-dimensional atomic hydrogen. Phys. Rev. Lett. 81, 4545.4548 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Voronin, A.Y., Froelich, P., Nesvizhevsky, V.V: Gravitational quantum states of antihydrogen. Phys. Rev. A 83, 032903 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Kellerbauer, A., et al.: Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instr. Meth. B. 266, 351 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Charman, A., et al.: Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nature Commun. 4, 1785 (2013)CrossRefGoogle Scholar
  9. 9.
    Indelicato, P., et al.: The Gbar project, or how does antimatter fall? Hyperf. Int. 228, 141 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Pérez, P., et al.: The GBAR antimatter gravity experiment. Hyperf. Int. 233, 21 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Silvera, I.F., Walraven, J.T.M: Stabilization of atomic hydrogen at low temperature. Phys. Rev. Lett. 44, 164 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    Hess, H.H.: Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys. Rev. B 34, 3476 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    Crepin, P.P., et al.: Quantum reflection of antihydrogen from a liquid helium film. Europ. Phys. Lett. 119, 33001 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Berkhout, J.J., et al.: Vanishing sticking probabilities and enhanced capillary flow of spin-polarized hydrogen. Phys. Rev. Lett. 57, 2387 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    Berkhout, J.J., et al.: Quantum reflection: focusing of hydrogen atoms with a concave mirror. Phys. Rev. Lett. 63, 1689 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    Doyle, J.M., et al.: Hydrogen in the submillikelvin regime: Sticking probability on superfluid 4He. Phys. Rev. Lett. 67, 603 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Pinkse, P.W.H., Mosk, A., Weidemuller, M., Reynolds, M.W., Hijmans, T.W., Walraven, J.T.M: One-dimensional evaporative cooling of magnetically trapped atomic hydrogen. Phys. Rev. A 57, 4747 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Fried, D.G.: Bose-Einstein Condensation of Atomic Hydrogen. Ph.D. thesis MIT (1999)Google Scholar
  19. 19.
    Doyle, J.M.: Energy Distribution Measurements of Magnetically Trapped Spin Polarized Atomic Hydrogen: Evaporative Cooling and Surface Sticking. Ph.D. thesis MIT (1991)Google Scholar
  20. 20.
    Attocube systems AG. ANPz101.
  21. 21.
    Ichikawa, G., et al.: Observation of the Spatial Distribution of Gravitationally Bound Quantum States of Ultracold Neutrons and its Derivation Using the Wigner Function. Phys. Rev. Lett. 112, 071101 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Nesvizhevsky, V: ILL Internal Report 96NE14T, p. 1 (1996)Google Scholar
  23. 23.
    Cabrera, B., et al.: Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors. Apl. Phys. Lett. 73, 735 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Huber, A., Gross, B., Weitz, M., Hänsch, T. W.: High-resolution spectroscopy of the 1S2S transition in atomic hydrogen. Phys. Rev. A 59, 1844 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Killian, T.C.: 1S-2s Spectroscopy of Trapped Hydrogen: the Cold Collision Frequency Shift and Studies of BEC. Ph.D. thesis MIT (1999)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  2. 2.Insitut Laue-Langevin (ILL)GrenobleFrance
  3. 3.P. N. Lebedev Physical InstituteMoscowRussia
  4. 4.Laboratoire Kastler BrosselSorbonne Université, CNRS, ENS-Université PSL, Collége de FranceParisFrance

Personalised recommendations