Hyperfine Interactions

, 240:13 | Cite as

First-principles study of structural, elastic, electronic, and thermal properties of the ternary intermetallic GdTiGe and GdTiSi

  • O. AkelEmail author
  • B. Abbar
  • Z. F. Meghoufel
  • H. Abbassa
  • M. Benkadour Benatia
Part of the following topical collections:
  1. Proceedings of the 2nd International Workshop on Magnetic Materials and Nanomaterials (MMN 2018), Boumerdes, Algeria, 1-4 October 2018


The full-potential linearized augmented plane wave (FP-LAPW) method using the generalized-gradient approximation (GGA) and the local density approximation (LDA) within the framework of density functional theory (DFT) is applied to the study of structural, elastic, electronic and thermal properties of CeScSi-type GdTiGe and CeFeSi-type GdTiSi intermetallic compounds. Elastic constants are calculated to investigate stability criteria and the mechanical nature of the studied materials. Both compounds are found to be mechanically anisotropic, and ductile, and meet the elastic stability criteria. To complete the fundamental characteristics of both compounds, we have analyzed the thermodynamic properties using the quasi-harmonic Debye model. The obtained results are in a favorable agreement with available experimental and theoretical data.


Intermetallic compound Density functional theory FP-LAPW Phase stability Physicochemical properties 



  1. 1.
    Welter, R., Verniere, A., Venturini, G., Malaman, B.: J. Alloys Compd. 283, 54–58 (1999)CrossRefGoogle Scholar
  2. 2.
    Morozkin, A.V.: J. Alloys Compd. 284, L7–L9 (1999)CrossRefGoogle Scholar
  3. 3.
    Morozkin, A.V., Viting, L.M., Sviridov, I.A., Tskhadadze, I.A.: J. Alloys Compd. 297, 168–175 (2000)CrossRefGoogle Scholar
  4. 4.
    Morozkin, A.V.: J. Alloys Compd. 287, 185–188 (1999)CrossRefGoogle Scholar
  5. 5.
    Knyazev, Y.U.V., Morozkin, A.V., Kuz’min, Y.U.I., Lukoyanov, A.V.: J. Alloys Compd. 384, 57–61 (2004)CrossRefGoogle Scholar
  6. 6.
    Okoye, C.M.I.: Eng. Mater. Sci. B 130, 101 (2006)CrossRefGoogle Scholar
  7. 7.
    Bouhemadou, A., Khenata, R.: Comput. Mater. Sci. 39, 803 (2007)CrossRefGoogle Scholar
  8. 8.
    Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 865 (1996)CrossRefGoogle Scholar
  9. 9.
    Murnaghan, F.D.: Sci. Proc. Natl. Acad. USA 30, 5390 (1944)Google Scholar
  10. 10.
    Skorek, G., Deniszczyk, J., Szade, J., Tyszka, B.: J. Phys. Condens. Matter 13, 6397–6409 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Mehl, M.J., Osburn, J.E., Papaconstantopoulos, D.A., Klein, B.M.: Phys. Rev. B 41, 10311 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, J., Yip, S., Phillpot, S.R., Wolf, D.: Phys. Rev. Lett. 71, 4182 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    Pugh, S.: Philos. Mag. 45, 823 (1982)CrossRefGoogle Scholar
  14. 14.
    Tvergaard, V., Hutshinson, J.W.: J. Am. Ceram. Soc. 71, 157 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    Peng, F., Chen, D., Yang, X.D.: Solid State Commun. 149, 2135 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Blanco, M.A., Francisco, E., Luana, V.: Comput. Phys. Commun. 158, 7 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Welter, R., Morozkin, A.V., Klosek, V., Verniere, A., Malaman, B.: J. Alloys Compd. 207, 307 (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Modeling and Simulation in Materials Science LaboratoryDjillali Liabès UniversitySidi Bel-AbbesAlgeria
  2. 2.Structure, Elaboration and Applications of Molecular Materials (SEA2M), Exact Sciences and Computer Sciences FacultyUniversity of Abdelhamid Ibn BadisMostaganemAlgeria
  3. 3.Laboratory of Exact Sciences and Computer Sciences FacultyUniversity of Abdelhamid Ibn BadisMostaganemAlgeria

Personalised recommendations