Hyperfine Interactions

, 239:60 | Cite as

Stringent tests of QED using highly charged ions

  • V. M. ShabaevEmail author
  • A. I. Bondarev
  • D. A. Glazov
  • M. Y. Kaygorodov
  • Y. S. Kozhedub
  • I. A. Maltsev
  • A. V. Malyshev
  • R. V. Popov
  • I. I. Tupitsyn
  • N. A. Zubova
Part of the following topical collections:
  1. Proceedings of the 7th Symposium on Symmetries in Subatomic Physics (SSP 2018), Aachen, Germany, 10-15 June 2018


The present status of tests of QED with highly charged ions is reviewed. The theoretical predictions for the Lamb shift and the transition energies are compared with available experimental data. Recent achievements in studies of the hyperfine splitting and the g-factor isotope shift with highly charged ions are reported. Special attention is paid to tests of QED within and beyond the Furry picture at strong-coupling regime. Prospects for tests of QED at supercritical fields that can be created in low-energy heavy-ion collisions are discussed as well.


Quantum electrodynamics Highly charged ions Lamb shift 


12.20.m 12.20.Ds 31.30.J- 



This work was supported by the Russian Science Foundation (Grant No. 17-12-01097).


  1. 1.
    Glazov, D.A., et al.: Tests of fundamental theories with heavy ions at low-energy regime. Hyperfine Interact. 199, 71–83 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Kozhedub, Y.S., et al.: Nuclear deformation effect on the binding energies in heavy ions. Phys. Rev. A 77, 032501 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Yerokhin, V.A., Shabaev, V.M.: Lamb shift of n = 1 and n = 2 states of hydrogen-like atoms, 1 ≤ Z ≤ 110. J. Phys. Chem. Ref. Data 44, 033103 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Evaluation of the two-loop self-energy correction to the ground state energy of H-like ions to all orders in Z α. Eur. Phys. J. D 25, 203–238 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Shabaev, V.M., et al.: Recoil correction to the ground-state energy of hydrogenlike atoms. Phys. Rev. A 57, 4235–4239 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Plunien, G., Soff, G.: Nuclear-polarization contribution to the Lamb shift in actinide nuclei. Phys. Rev. A 51, 1119–1131 (1995). Erratum: Phys. Rev. A 53, 4614 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Nefiodov, A.V., et al.: Nuclear polarization effects in spectra of multicharged ions. Phys. Lett. A 222, 227–232 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Gumberidze, A., et al.: Quantum electrodynamics in strong electric fields: The ground-state Lamb shift in hydrogenlike uranium. Phys. Rev. Lett. 94, 223001 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Schweppe, J., et al.: Measurement of the Lamb shift in lithiumlike uranium (U89+). Phys. Rev. Lett. 66, 1434–1437 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Brandau, C., et al.: Precise determination of the 2s 1/2 − 2p 1/2 splitting in very heavy lithiumlike ions utilizing dielectronic recombination. Phys. Rev. Lett. 91, 073202 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Beiersdorfer, P., et al.: Measurement of the two-loop Lamb shift in lithiumlike U89+. Phys. Rev. Lett. 95, 233003 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Yerokhin, V.A., Artemyev, A.N., Shabaev, V.M.: QED treatment of electron correlation in Li-like ions. Phys. Rev. A 75, 062501 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Sapirstein, J., Cheng, K.T.: S-matrix calculations of energy levels of the lithium isoelectronic sequence. Phys. Rev. A 83, 012504 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Chantler, C.T., et al.: Testing three-body quantum electrodynamics with trapped Ti20+ ions: Evidence for a Z-dependent divergence between experiment and calculation. Phys. Rev. Lett. 109, 153001 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Trassinelli, M., et al.: Observation of the 2p 3/2 → 2s 1/2 intra-shell transition in He-like uranium. Eur. Phys. Lett. 87, 63001 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Amaro, P., et al.: Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon. Phys. Rev. Lett. 109, 043005 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Kubicek, K., et al.: Transition energy measurements in hydrogenlike and heliumlike ions strongly supporting bound-state QED calculations. Phys. Rev. A 90, 032508 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Beiersdorfer, P., Brown, G.V.: Experimental study of the x-ray transitions in the heliumlike isoelectronic sequence: Updated results. Phys. Rev. A 91, 032514 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Epp, S.W., et al.: Single-photon excitation of Kα in heliumlike Kr34+: Results supporting quantum electrodynamics predictions. Phys. Rev. A 92, 020502(R) (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Machado, J., et al.: High-precision measurements of n = 2 → n = 1 transition energies and level widths in He- and Be-like argon ions. Phys. Rev. A 97, 032517 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Artemyev, A.N., et al.: QED calculation of the n = 1 and n = 2 energy levels in He-like ions. Phys. Rev. A 71, 062104 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Klaft, I., et al.: Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike 209Bi82+. Phys. Rev. Lett. 73, 2425–2427 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Crespo Lopez-Urrutia, J.R., et al.: Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogenlike 165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77, 826–829 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    Crespo Lopez-Urrutia, J.R., et al.: Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions 185Re74+ and 187Re74+. Phys. Rev. A 57, 879–887 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Seelig, P., et al.: Ground state hyperfine splitting of hydrogenlike 207Pb81+ by laser excitation of a bunched ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81, 4824–4827 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Beiersdorfer, P., et al.: Hyperfine structure of hydrogenlike thallium isotopes. Phys. Rev. A 64, 032506 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Ullmann, J., et al.: An improved value for the hyperfine splitting of hydrogen-like 209Bi82+. J. Phys. B 48, 144022 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Shabaev, V.M., et al.: Ground-state hyperfine splitting of high-Z hydrogenlike ions. Phys. Rev. A 56, 252–255 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Sen’kov, R.A., Dmitriev, V.F.: Nuclear magnetization distribution and hyperfine splitting in Bi82+ ion. Nucl. Phys. A 706, 351–364 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Shabaev, V.M., et al.: Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959–3962 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Raghavan, P.: Table of nuclear moments. At. Data Nucl. Data Tables 42, 189–291 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    Volotka, A.V., et al.: Test of many-electron QED effects in the hyperfine splitting of heavy high-Z Ions. Phys. Rev. Lett. 108, 073001 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Ullmann, J., et al.: High precision hyperfine measurements in bismuth challenge bound-state strong-field QED. Nat. Commun. 8, 15484 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Skripnikov, L.V., et al.: New nuclear magnetic moment of 209Bi: Resolving the bismuth hyperfine puzzle. Phys. Rev. Lett. 120, 093001 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    Häffner, H., et al.: High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon. Phys. Rev. Lett. 85, 5308–5311 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Shabaev, V.M., Yerokhin, V.A.: Recoil correction to the bound-electron g factor in H-like atoms to all orders in Z. Phys. Rev. Lett. 88, 091801 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Yerokhin, V.A., Indelicato, P., Shabaev, V.M.: Self-energy correction to the bound-electron g factor in H-like ions. Phys. Rev. Lett. 89, 143001 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Pachucki, K., et al.: Complete two-loop correction to the bound-electron g factor. Phys. Rev. A 72, 022108 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Sturm, S., Werth, G., Blaum, K.: Electron g-factor determinations in Penning traps. Annalen Der Physik 525, 620–635 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Wagner, A., et al.: g factor of lithiumlike silicon 28Si11+. Phys. Rev. Lett. 110, 033003 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Sturm, S., et al.: High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Shabaev, V.M., et al.: Theory of bound-electron g factor in highly charged ions. J. Phys. Chem. Ref. Data 44, 031205 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Czarnecki, A., et al.: Two-loop binding corrections to the electron gyromagnetic factor. Phys. Rev. Lett. 120, 043203 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Zatorski, J., et al.: Extraction of the electron mass from g-factor measurements on light hydrogenlike ions. Phys. Rev. A 96, 012502 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Köhler, F., et al.: Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Commun. 7, 10246 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Yan, Z.-C.: Calculations of magnetic moments for three-electron atomic systems. Phys. Rev. Lett. 86, 5683–5686 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    Yan, Z.-C.: Calculations of magnetic moments for lithium-like ions. J. Phys. B 35, 1885–1892 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    Hegstrom, R.A.: Magnetic moment of atomic lithium. Phys. Rev. A 11, 421–426 (1975)ADSCrossRefGoogle Scholar
  49. 49.
    Shabaev, V.M., et al.: Recoil effect on the g factor of Li-like ions. Phys. Rev. Lett. 119, 263001 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    Shabaev, V.M.: QED theory of the nuclear recoil effect on the atomic g factor. Phys. Rev. A 64, 052104 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    Malyshev, A.V., et al.: Nuclear recoil effect on the g-factor of heavy ions: Prospects for tests of quantum electrodynamics in a new region. JETP Lett. 106, 765–770 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    Greiner, W., Muller, B., Rafelski, J.: Quantum Electrodynamics of Strong Fields. Springer, Berlin (1985)CrossRefGoogle Scholar
  53. 53.
    Maltsev, I.A., et al.: Pair production in low-energy collisions of uranium nuclei beyond the monopole approximation. Nucl. Instr. Methods Phys. Res. B 408, 97–99 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    Popov, R.V., et al.: One-center calculations of the electron-positron pair creation in low-energy collisions of heavy bare nuclei. Eur. Phys. J. D 72, 115 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • V. M. Shabaev
    • 1
    Email author return OK on get
  • A. I. Bondarev
    • 1
    • 2
  • D. A. Glazov
    • 1
  • M. Y. Kaygorodov
    • 1
  • Y. S. Kozhedub
    • 1
  • I. A. Maltsev
    • 1
  • A. V. Malyshev
    • 1
  • R. V. Popov
    • 1
  • I. I. Tupitsyn
    • 1
  • N. A. Zubova
    • 1
  1. 1.Department of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Center for Advanced StudiesPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations