Advertisement

Hyperfine spectroscopy of hydrogen and antihydrogen in ASACUSA

  • E. WidmannEmail author
  • C. Amsler
  • S. Arguedas Cuendis
  • H. Breuker
  • M. Diermaier
  • P. Dupré
  • C. Evans
  • M. Fleck
  • A. Gligorova
  • H. Higaki
  • Y. Kanai
  • B. Kolbinger
  • N. Kuroda
  • M. Leali
  • A. M. M. Leite
  • V. Mäckel
  • C. Malbrunot
  • V. Mascagna
  • O. Massiczek
  • Y. Matsuda
  • D. J. Murtagh
  • Y. Nagata
  • A. Nanda
  • D. Phan
  • C. Sauerzopf
  • M. C. Simon
  • M. Tajima
  • H. Spitzer
  • M. Strube
  • S. Ulmer
  • L. Venturelli
  • M. Wiesinger
  • Y. Yamazaki
  • J. Zmeskal
Open Access
Article
  • 143 Downloads
Part of the following topical collections:
  1. Proceedings of the 7th Symposium on Symmetries in Subatomic Physics (SSP 2018), Aachen, Germany, 10-15 June 2018

Abstract

The ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a precise measurement of the antihydrogen ground-state hyperfine structure as a test of the fundamental CPT symmetry. A beam of antihydrogen atoms is formed in a CUSP trap, undergoes Rabi-type spectroscopy and is detected downstream in a dedicated antihydrogen detector. In parallel measurements using a polarized hydrogen beam are being performed to commission the spectroscopy apparatus and to perform measurements of parameters of the Standard Model Extension (SME). The current status of antihydrogen spectroscopy is reviewed and progress of ASACUSA is presented.

Keywords

Antihydrogen CPT Hyperfine spectroscopy Matter-antimatter symmetry 

Notes

Acknowledgements

This work has been supported by the European Research Council under European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement (291242), the Austrian Ministry of Science and Research, the Austrian Science Fund (FWF): W1252-N27, a Grant-in-Aid for Specially Promoted Research (24000008) of MEXT and the RIKEN Pioneering Project. We express our gratitude towards the AD group of CERN.

References

  1. 1.
    Tanabashi, M., et al.: (Particle data group): review of particle properties. Phys. Rev. D 98, 010001 (2018)CrossRefGoogle Scholar
  2. 2.
    Ahmadi, M., Alves, B.X.R., Baker, C.J., Bertsche, W., Butler, E., Capra, A., Carruth, C., Cesar, C.L., Charlton, M., Cohen, S., Collister, R., Eriksson, S., Evans, A., Evetts, N., Fajans, J., Friesen, T., Fujiwara, M.C., Gill, D.R., Gutierrez, A., Hangst, J.S., Hardy, W.N., Hayden, M.E., Isaac, C.A., Ishida, A., Johnson, M.A., Jones, S.A., Jonsell, S., Kurchaninov, L., Madsen, N., Mathers, M., Maxwell, D., McKenna, J.T.K., Menary, S., Michan, J.M., Momose, T., Munich, J.J., Nolan, P., Olchanski, K., Olin, A., Pusa, P., Rasmussen, C.Ã., Robicheaux, F., Sacramento, R.L., Sameed, M., Sarid, E., Silveira, D.M., Stracka, S., Stutter, G., So, C., Tharp, T.D., Thompson, J.E., Thompson, R.I., van der Werf, D.P., Wurtele, J.S.: Observation of the hyperfine spectrum of antihydrogen. Nature 548, 66 (2017).  https://doi.org/10.1038/nature23446 ADSCrossRefGoogle Scholar
  3. 3.
    Ahmadi, M., Alves, B.X.R., Baker, C.J., Bertsche, W., Capra, A., Carruth, C., Cesar, C.L., Charlton, M., Cohen, S., Collister, R., Eriksson, S., Evans, A., Evetts, N., Fajans, J., Friesen, T., Fujiwara, M.C., Gill, D.R., Hangst, J.S., Hardy, W.N., Hayden, M.E., Isaac, C.A., Johnson, M.A., Jones, J.M., Jones, S.A., Jonsell, S., Khramov, A., Knapp, P., Kurchaninov, L., Madsen, N., Maxwell, D. , McKenna, J.T.K., Menary, S., Momose, T., Munich, J.J., Olchanski, K., Olin, A., Pusa, P., Rasmussen, C.Ã., Robicheaux, F., Sacramento, R.L., Sameed, M., Sarid, E., Silveira, D.M., Stutter, G., So, C., Tharp, T.D., Thompson, R.I., van der Werf, D.P., Wurtele, J.S.: Characterization of the 1s-2s transition in antihydrogen. Nature 557 (7703), 71–75 (2018).  https://doi.org/10.1038/s41586-018-0017-2 ADSCrossRefGoogle Scholar
  4. 4.
    Crivelli, P., Cooke, D., Heiss, M.W.: Antiproton charge radius. Phys. Rev. D 94, 052008 (2016).  https://doi.org/10.1103/PhysRevD.94.052008, https://link.aps.org/doi/10.1103/PhysRevD.94.052008 ADSCrossRefGoogle Scholar
  5. 5.
    Ulmer, S., Smorra, C., Mooser, A., Franke, K., Nagahama, H., Schneider, G., Higuchi, T., Van Gorp, S., Blaum, K., Matsuda, Y., et al.: High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524(7564), 196–199 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Smorra, C., Sellner, S., Borchert, M.J., Harrington, J.A., Higuchi, T., Nagahama, H., Tanaka, T., Mooser, A., Schneider, G., Bohman, M., Blaum, K., Matsuda, Y., Ospelkaus, C., Quint, W., Walz, J., Yamazaki, Y., Ulmer, S.: A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017).  https://doi.org/10.1038/nature24048 ADSCrossRefGoogle Scholar
  7. 7.
    Colladay, D., Kostelecký, V.A.: CPT violation and the standard model. Phys. Rev. D 55, 6760–6774 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Kostelecký, V., Russell, N.: Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83(1), 11–32 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Kostelecky, A., Russell, N.: Data Tables for Lorentz and CPT Violation. arXiv:0801.0287 (2018)
  10. 10.
    Charlton, M., Eades, J., Horvath, D., Hughes, R., Zimmermann, C.: Antihydrogen physics. Phys. Rep. 241(2), 65–117 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Hori, M., Walz, J.: Physics at CERN’s antiproton decelerator. Prog. Part. Nucl. Phys. 72, 206–253 (2013).  https://doi.org/10.1016/j.ppnp.2013.02.004. http://www.sciencedirect.com/science/article/pii/S0146641013000069 ADSCrossRefGoogle Scholar
  12. 12.
    Ahmadi, M., Alves, B.X.R., Baker, C.J., Bertsche, W., Capra, A., Carruth, C., Cesar, C.L., Charlton, M., Cohen, S., Collister, R., Eriksson, S., Evans, A., Evetts, N., Fajans, J., Friesen, T., Fujiwara, M.C., Gill, D.R., Hangst, J.S., Hardy, W.N., Hayden, M.E., Hunter, E.D., Isaac, C.A., Johnson, M.A., Jones, J.M., Jones, S.A., Jonsell, S., Khramov, A., Knapp, P., Kurchaninov, L., Madsen, N., Maxwell, D., McKenna, J.T.K., Menary, S., Michan, J.M., Momose, T., Munich, J.J., Olchanski, K., Olin, A., Pusa, P., Rasmussen, C.Ã., Robicheaux, F., Sacramento, R.L., Sameed, M., Sarid, E., Silveira, D.M., Starko, D.M., Stutter, G., So, C., Tharp, T.D., Thompson, R.I., van der Werf, D.P., Wurtele, J.S.: Observation of the 1s-2p Lyman-α transition in antihydrogen. Nature 561, 211 (2018).  https://doi.org/10.1038/s41586-018-0435-1 ADSCrossRefGoogle Scholar
  13. 13.
    Widmann, E., Eades, J., Hayano, R.S., Hori, M., Horváth, D., Ishikawa, T., Juhász, B., Sakaguchi, J., Torii, H.A., Yamaguchi, H., Yamazaki, T.: Hyperfine structure measurements of antiprotonic helium and antihydrogen. In: S.G. Karshenboim, F.S. Pavone, F. Bassani, M. Inguscio, T.W. Hansch (eds.) The Hydrogen Atom: Precision Physics of Simple Atomic Systems, Lecture Notes in Physics, vol. 570, pp. 528–542. Springer, Berlin. arXiv:http://arXiv.org/abs/nucl-ex/0102002(2001)
  14. 14.
    Widmann, E., Diermaier, M., Juhász, B., Malbrunot, C., Massiczek, O., Sauerzopf, C., Suzuki, K., Wünschek, B., Zmeskal, J., Federmann, S., Kuroda, N., Ulmer, S., Yamazaki, Y.: Measurement of the hyperfine structure of antihydrogen in a beam. Hyperfine Interact. 215 (1-3), 1–8 (2013).  https://doi.org/10.1007/s10751-013-0809-6. arXiv:1301.4670 ADSCrossRefGoogle Scholar
  15. 15.
    Rabi, I.I., Zacharias, J.R., Millman, S., Kusch, P.: A new method of measuring nuclear magnetic moment. Phys. Rev. 53, 318 (1938)ADSCrossRefGoogle Scholar
  16. 16.
    Kuroda, N., Tajima, M., Radics, B., Dupré, P., Nagata, Y., Kaga, C., Kanai, Y., Leali, M., Rizzini, E.L., Mascagna, V., Matsudate, T., Breuker, H., Higaki, H., Matsuda, Y., Ulmer, S., Venturelli, L., Yamazaki, Y.: Antihydrogen synthesis in a double-cusp trap.  https://doi.org/10.7566/JPSCP.18.011009. https://journals.jps.jp/doi/abs/10.7566/JPSCP.18.011009 (2017)
  17. 17.
    Kuroda, N., Torii, H., Franzen, K., Wang, Z., Yoneda, S., Inoue, M., Hori, M., Juhász, B., Horváth, D., Higaki, H., Mohri, A., Eades, J., Komaki, K., Yamazaki, Y.: Confinement of a large number of antiprotons and production of an ultraslow antiproton beam. Phys. Rev. Lett. 94(2), 023401 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Mohri, A., Yamazaki, Y.: A possible new scheme to synthesize antihydrogen and to prepare a polarised antihydrogen beam. Europhys. Lett. 63, 207 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Gabrielse, G., Rolston, S., Haarsma, L., Kells, W.: Antihydrogen production using trapped plasmas. Phys. Lett. A 129, 38–42 (1988).  https://doi.org/10.1016/0375-9601(88)90470-7. http://www.sciencedirect.com/science/article/pii/0375960188904707 ADSCrossRefGoogle Scholar
  20. 20.
    Enomoto, Y., Kuroda, N., Michishio, K., Kim, C.H., Higaki, H., Nagata, Y., Kanai, Y., Torii, H.A., Corradini, M., Leali, M., Lodi-Rizzini, E., Mascagna, V., Venturelli, L., Zurlo, N., Fujii, K., Ohtsuka, M., Tanaka, K., Imao, H., Nagashima, Y., Matsuda, Y., Juhász, B., Mohri, A., Yamazaki, Y.: Synthesis of cold antihydrogen in a cusp trap. Phys. Rev. Lett. 105(24), 243401 (2010).  https://doi.org/10.1103/PhysRevLett.105.243401 ADSCrossRefGoogle Scholar
  21. 21.
    Kuroda, N., Ulmer, S., Murtagh, D.J., Van Gorp, S., Nagata, Y., Diermaier, M., Federmann, S., Leali, M., Malbrunot, C., Mascagna, V., Massiczek, O., Michishio, K., Mizutani, T., Mohri, A., Nagahama, H., Ohtsuka, M., Radics, B., Sakurai, S., Sauerzopf, C., Suzuki, K., Tajima, M., Torii, H.A., Venturelli, L., Wünschek, B., Zmeskal, J., Zurlo, N., Higaki, H., Kanai, Y., Lodi Rizzini, E., Nagashima, Y., Matsuda, Y., Widmann, E., Yamazaki, Y.: A source of antihydrogen for in-flight hyperfine spectroscopy. Nat. Commun. 5, 3089 (2014).  https://doi.org/10.1038/ncomms4089 CrossRefGoogle Scholar
  22. 22.
    Kolbinger, B., Amsler, C., Breuker, H., Diermaier, M., Dupré, P., Fleck, M., Gligorova, A., Higaki, H., Kanai, Y., Kobayashi, T., Leali, M., Mäckel, V., Malbrunot, C., Mascagna, V., Massiczek, O., Matsuda, Y., Murtagh, D., Nagata, Y., Sauerzopf, C., Simon, M.C., Tajima, M., Ulmer, S., Kuroda, N., Venturelli, L., Widmann, E., Yamazaki, Y., Zmeskal, J.: Recent developments from ASACUSA on antihydrogen detection. EPJ Web of Conferences 181, 01003 (2018).  https://doi.org/10.1051/epjconf/201818101003 CrossRefGoogle Scholar
  23. 23.
    Malbrunot, C., Amsler, C., Arguedas Cuendis, S., Breuker, H., Dupré, P., Fleck, M., Higaki, H., Kanai, Y., Kolbinger, B., Kuroda, N., Leali, M., Mäckel, V., Mascagna, V., Massiczek, O., Matsuda, Y., Nagata, Y., Simon, M.C., Spitzer, H., Tajima, M., Ulmer, S., Venturelli, L., Widmann, E., Wiesinger, M., Yamazaki, Y., Zmeskal, J.: The ASACUSA antihydrogen and hydrogen program: results and prospects. Philosophical transactions of the Royal Society of London a: mathematical. Phys. Eng. Sci. 376(2116), 20170273 (2018).  https://doi.org/10.1098/rsta.2017.0273. http://rsta.royalsocietypublishing.org/content/376/2116/20170273 CrossRefGoogle Scholar
  24. 24.
    Diermaier, M., Jepsen, C.B., Kolbinger, B., Malbrunot, C., Massiczek, O., Sauerzopf, C., Simon, M.C., Zmeskal, J., Widmann, E.: In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy. Nat. Comm. 8, 15749 (2017).  https://doi.org/10.1038/ncomms15749 ADSCrossRefGoogle Scholar
  25. 25.
    Hellwig, H., Vessot, R.F., Levine, M.W., Zitzewitz, P.W., Allan, D.W., Glaze, D.J.: Measurement of the unperturbed hydrogen hyperfine transition frequency. IEEE Trans. Instrum. Meas. 19(4), 200–209 (1970)CrossRefGoogle Scholar
  26. 26.
    Karshenboim, S.G.: Some possibilities for laboratory searches for variations of fundamental constants. Can. J. Phys. 78(7), 639–678 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    Kostelecký, V.A., Vargas, A.J.: Lorentz and CPT tests with hydrogen, antihydrogen, and related systems. Phys. Rev. D 92, 056002 (2015).  https://doi.org/10.1103/PhysRevD.92.056002. http://link.aps.org/doi/10.1103/PhysRevD.92.056002 ADSCrossRefGoogle Scholar
  28. 28.
    McKeehan, L.W.: Combinations of circular currents for producing uniform magnetic field gradients. Rev. Sci. Instrum. 7(4), 178–179 (1936).  https://doi.org/10.1063/1.1752110 ADSCrossRefGoogle Scholar
  29. 29.
    Arguedas Cuendis, S.: Measuring the hydrogen ground-state hyperfine splitting through the π 1 and σ 1 transitions. M. thesis, Universität Wien. Fakultät für Physik. http://othes.univie.ac.at/22584/ (2017)
  30. 30.
    Wiesinger, M.: Design and implementation of new optics for the atomic hydrogen beam of ASACUSA’s antihydrogen hyperfine spectrscopy experiment. M. thesis, Technische Universität Wien. http://othes.univie.ac.at/22584/ (2017)
  31. 31.
    Breit, G., Rabi, I.I.: Measurement of nuclear spin. Phys. Rev. 38, 2082–2083 (1931).  https://doi.org/10.1103/PhysRev.38.2082.2. https://link.aps.org/doi/10.1103/PhysRev.38.2082.2 ADSCrossRefGoogle Scholar
  32. 32.
    Kolbinger, B., Capon, A., Diermaier, M., Lehner, S., Malbrunot, C., Massiczek, O., Sauerzopf, C., Simon, M.C., Widmann, E.: Numerical simulations of hyperfine transitions of antihydrogen. Hyperfine Interact. 233(1), 47–51 (2015).  https://doi.org/10.1007/s10751-015-1130-3 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. Widmann
    • 1
    Email author
  • C. Amsler
    • 1
  • S. Arguedas Cuendis
    • 1
  • H. Breuker
    • 2
  • M. Diermaier
    • 1
  • P. Dupré
    • 2
  • C. Evans
    • 3
  • M. Fleck
    • 4
  • A. Gligorova
    • 1
  • H. Higaki
    • 5
  • Y. Kanai
    • 2
  • B. Kolbinger
    • 1
  • N. Kuroda
    • 4
  • M. Leali
    • 3
  • A. M. M. Leite
    • 1
  • V. Mäckel
    • 2
  • C. Malbrunot
    • 1
    • 6
  • V. Mascagna
    • 3
    • 7
  • O. Massiczek
    • 1
  • Y. Matsuda
    • 4
  • D. J. Murtagh
    • 1
  • Y. Nagata
    • 8
  • A. Nanda
    • 1
  • D. Phan
    • 1
  • C. Sauerzopf
    • 1
  • M. C. Simon
    • 1
  • M. Tajima
    • 2
  • H. Spitzer
    • 1
  • M. Strube
    • 1
  • S. Ulmer
    • 2
  • L. Venturelli
    • 3
  • M. Wiesinger
    • 1
  • Y. Yamazaki
    • 2
  • J. Zmeskal
    • 1
  1. 1.Stefan Meyer Institute for Subatomic PhysicsAustrian Academy of SciencesViennaAustria
  2. 2.RIKENSaitamaJapan
  3. 3.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di Brescia, Brescia, Italy and Istituto Nazionale di Fisica Nucleare (INFN), sez. PaviaPaviaItaly
  4. 4.University of TokyoTokyoJapan
  5. 5.Hiroshima UniversityHiroshimaJapan
  6. 6.CERNGenevaSwitzerland
  7. 7.Dipartimento di Scienza e Alta TecnologiaUniverità’ dell’Insubria and INFN sez. di PaviaPaviaItaly
  8. 8.Tokyo University of ScienceTokyoJapan

Personalised recommendations