Advertisement

Hyperfine Interactions

, 239:59 | Cite as

A challenge to lepton universality in B meson decays

  • Vera LüthEmail author
Article
Part of the following topical collections:
  1. Proceedings of the 7th Symposium on Symmetries in Subatomic Physics (SSP 2018), Aachen, Germany, 10-15 June 2018

Abstract

One of the key assumptions of the Standard Model of fundamental particles is that the interactions of the charged leptons, namely electrons, muons, and taus, differ only because of their different masses. While precision tests have not revealed any definite violation of this assumption, recent studies of B meson decays involving the higher-mass tau lepton have resulted in observations that challenge lepton universality at the level of four standard deviations. A confirmation of these results would point to new particles or interactions, and could have profound implications for our understanding of particle physics.

Keywords

Lepton universality Flavor physics BABAR Belle LHCb 

References

  1. 1.
    Mann, R.B.: An introduction to particle physics and the Standard Model. CRC Press, New York (2010)Google Scholar
  2. 2.
    Weinberg, S.: The Quantum Theory of Fields. In: Modern applications, vol. 2. Cambridge University Press, Cambridge (2013)Google Scholar
  3. 3.
    Ablikim, M., et al.: Precision measurement of the mass of the τ lepton. Phys. Rev. D90, 012001 (2014)ADSGoogle Scholar
  4. 4.
    Lazzeroni, C., et al.: Precision measurement of the ratio of the charged kaon leptonic decay rates. Phys. Lett. B719, 326–336 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Unless stated otherwise, the inclusion of charged-conjugate states and decay modes is implied here and in the followingGoogle Scholar
  6. 6.
    Tanaka, M.: Charged Higgs effects on exclusive semitauonic B decays. Z. Phys. C67, 321–326 (1995)ADSGoogle Scholar
  7. 7.
    Freytsis, M., Ligeti, Z., Ruderman, J.T.: Flavor models for \(\bar {B}, D^{(*)} \bar {\nu }\). Phys Rev. D92, 054018 (2015)ADSGoogle Scholar
  8. 8.
    Korner, J.G., Schuler, G.A.: Exclusive semileptonic heavy meson decays including lepton mass effects. Z Phys. C46, 93 (1990)ADSGoogle Scholar
  9. 9.
    Kobayashi, M., Maskawa, T.: CP violation in the renormalizable theory of weak interaction. Prog. Theor Phys. 49, 652–657 (1973)ADSCrossRefGoogle Scholar
  10. 10.
    Amhis, Y., et al.: Averages of b-hadron, c-hadron, and τ-lepton properties. arXiv:1412.7515 (2014)
  11. 11.
    Helicity refers to the component of the angular momentum of a particle parallel to the direction to its momentumGoogle Scholar
  12. 12.
    Bigi, D., Gambino, P.: Revisiting B D ν. Phys. Rev. D94(9), 094008 (2016)ADSGoogle Scholar
  13. 13.
    Bernlochner, F.U., Ligeti, Z., Papucci, M., Robinson, D.J.: Combined analysis of semileptonic B decays to D and D : R(D (∗)), |V cb|, and new physics. Phys. Rev. D95 (11), 115008 (2017). [Erratum: Phys. Rev.D97,no.5,059902(2018)]ADSGoogle Scholar
  14. 14.
    Bigi, D., Gambino, P., Schacht, S.: r(d ), |v cb|, and the Heavy Quark Symmetry relations between form factors. JHEP 11, 061 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Jaiswal, S., Nandi, S., Patra, S.K.: Extraction of |v cb| from B D (∗) ν and the Standard Model predictions of r(d (∗)). JHEP 12, 060 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Aubert, B., et al.: The BABAR detector. Nucl. Instrum. Meth. A479, 1–116 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Aubert, B., et al.: The BABAR detector: upgrades, operation and performance. Nucl. Instrum. Meth. A729, 615–701 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Abashian, A., et al.: The Belle detector. Nucl. Instrum. Meth. A479, 117–232 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Alves, A.A. Jr., et al.: The LHCb detector at the LHC. JINST 3, S08005 (2008)ADSGoogle Scholar
  20. 20.
    Dettori, F.: Performance of the LHCb detector during the LHC proton runs 2010-2012. Nucl. Instrum. Meth. A732, 40–43 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Feindt, M., et al.: A hierarchical neuroBayes-based algorithm for full reconstruction of B mesons at B factories. Nucl. Instrum. Meth. A654, 432–440 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Lees, J.P., et al.: Measurement of an excess of \(\bar {B} d^{(*)}\tau ^{-} \bar {\nu }_{\tau }\) decays and Implications for charged Higgs bosons. Phys. Rev. D88, 072012 (2013)ADSGoogle Scholar
  23. 23.
    Aaij, R., et al.: Measurement of the ratio of branching fractions \(\mathcal {B}(\bar {B}^{0} D^{*+}\tau ^{-}\bar {\nu }_{\tau })/\mathcal {B}(\bar {B}^{0} D^{*+}\mu ^{-}\bar {\nu }_{\mu })\). Phys. Rev. Lett. 115, 111803 (2015). [Addendum: Phys. Rev. Lett.115,no.15,159901(2015)]ADSCrossRefGoogle Scholar
  24. 24.
    Aaij, R., et al.: Test of Lepton Flavor Universality by the measurement of the b 0 d ∗− τ + ν τ branching fraction using three-prong τ decays, vol. D97 (2018)Google Scholar
  25. 25.
    Huschle, M., et al.: Measurement of the branching ratio of \(\bar {B} d^{(\ast )} \tau ^{-} \bar {\nu }_{\tau }\) relative to \(\bar {B} d^{(\ast )} \ell ^{-} \bar {\nu }_{\ell }\) decays with hadronic tagging at Belle. Phys. Rev. D92, 072014 (2015)ADSGoogle Scholar
  26. 26.
    Sato, Y., et al.: Measurement of the branching ratio of \(\bar {B}^{0} d^{\ast +} \tau ^{-} \bar {\nu }_{\tau }\) relative to \(\bar {B}^{0} d^{\ast +} \ell ^{-} \bar {\nu }_{\ell }\) decays with semileptonic tagging. Phys. Rev. D94, 072007 (2016)ADSGoogle Scholar
  27. 27.
    Heavy Flavor Averaging Group. Average of \({{\mathcal {R}}_{D}}\) and \({{\mathcal {R}}_{D^{*}}}\) for Summer 2018. https://hflav-eos.web.cern.ch/hflav-eos/semi/summer18/RDRDs.html (2018)
  28. 28.
    Na, H., et al.: B D l ν form factors at nonzero recoil and extraction of |V cb|. Phys. Rev. D92, 054510 (2015). [Erratum: Phys. Rev.D93,119906(2016)]ADSGoogle Scholar
  29. 29.
    Fajfer, S., Kamenik, J.F., Nisandzic, I.: On the B d ν τ sensitivity to new physics. Phys. Rev. D85, 094025 (2012)ADSGoogle Scholar
  30. 30.
    Bailey, J.A., et al.: B D ν form factors at nonzero recoil and |V cb| from 2 + 1-flavor lattice QCD. Phys. Rev. D 92(3), 034506 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Chatrchyan, S., et al.: Search for a \(w^{\prime }\) boson decaying to a bottom quark and a top quark in pp collisions at \(\sqrt {s}= 7\) TeV. Phys. Lett. B718, 1229–1251 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Aad, G., et al.: Search for \(w^{\prime } tb\) in the lepton plus jets final state in proton-proton collisions at a centre-of-mass energy of \(\sqrt {s}\) = 8 TeV with the ATLAS detector. Phys. Lett. B743, 235–255 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Prieels, R., et al.: Measurement of the parameter \(\xi ^{\prime \prime }\) in polarized muon decay and implications on exotic couplings of the leptonic weak interaction, vol. D90 (2014)Google Scholar
  34. 34.
    Stahl, A.: Physics with tau leptons. Springer Tracts Mod. Phys. 160, 1–316 (2000)CrossRefGoogle Scholar
  35. 35.
    Chatrchyan, S., et al.: Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716, 30 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Aad, G., et al.: Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Barger, V.D., Hewett, J.L., Phillips, R.J.N.: New constraints on the charged Higgs sector in Two-Higgs-Doublet Models. Phys Rev. D41, 3421–3441 (1990)ADSGoogle Scholar
  38. 38.
    Gunion, J.F., Haber, H.E.: Higgs Bosons in supersymmetric models. 1. Nucl. Phys. B272, 1 (1986). [Erratum: Nucl. Phys.B402,567(1993)]ADSCrossRefGoogle Scholar
  39. 39.
    Dorsner, I., Fajfer, S., Greljo, A., Kamenik, J.F., Kosnik, N.: Physics of leptoquarks in precision experiments and at particle colliders. Phys. Rept. 641, 1–68 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Datta, A., Duraisamy, M., Ghosh, D.: Diagnosing new physics in b c ν τ, decays in the light of the recent BABAR result. Phys. Rev. D86, 034027 (2012)ADSGoogle Scholar
  41. 41.
    Crivellin, A., Greub, C., Kokulu, A.: Explaining B D τ ν, B D τ ν and B τ ν in a 2HDM of type III. Phys. Rev. D86, 054014 (2012)ADSGoogle Scholar
  42. 42.
    Fajfer, S., Kamenik, J.F., Nisandzic, I., Zupan, J.: Implications of lepton flavor universality Violations in B decays. Phys. Rev Lett. 109, 161801 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Sakaki, Y., Tanaka, A., Tayduganov, M., Watanabe, R.: Testing leptoquark models in \(B D^{(*)}, \bar \nu \). Phys. Rev. D88, 094012 (2013)ADSGoogle Scholar
  44. 44.
    Dumont, B., Nishiwaki, K., Watanabe, R.: LHC Constraints and prospects for s 1 scalar leptoquark explaining the \(B d^{(*)} \bar {\nu }\) anomaly. Phys. Rev. D94, 034001 (2016)ADSGoogle Scholar
  45. 45.
    Bauer, M., Neubert, M.: Minimal leptoquark explanation for the R\(_{D^{(*)}}\), RK, and (g − 2)g anomalies. Phys. Rev. Lett. 116(14), 141802 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Buchmuller, W., Ruckl, R., Wyler, D.: Leptoquarks in lepton - quark collisions. Phys. Lett. B191, 442–448 (1987). [Erratum: Phys. Lett.B448,320(1999)]ADSCrossRefGoogle Scholar
  47. 47.
    Chekanov, S., et al.: A Search for resonance decays to lepton + jet at HERA and limits on leptoquarks. Phys. Rev. D68, 052004 (2003)ADSGoogle Scholar
  48. 48.
    Aaron, F.D., et al.: Search for first generation leptoquarks in ep collisions at HERA. Phys. Lett. B704, 388–396 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Aad, G., et al.: Search for third generation scalar leptoquarks in pp collisions at \(\sqrt {s}\) = 7 TeV with the ATLAS detector. JHEP 06, 033 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Khachatryan, V., et al.: Search for pair production of third-generation scalar leptoquarks and top squarks in pp collisions at \(\sqrt {s}\) = 8 TeV. Phys. Lett. B739, 229–249 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Hirose, S., et al.: Measurement of the τ lepton polarization and R(D , ) in the decay \({B} D^{*} \tau ^{-} \bar {\nu }_{\tau }\). arXiv:1612.00529 (2016)
  52. 52.
    Vossen, A., et al.: Measurement of the branching fraction of B d (∗) ν at Belle using hadronic tagging in fully reconstructed events (2018)Google Scholar
  53. 53.
    Aaij, R., et al.: Measurement of the ratio of branching fractions \(\mathcal {B}(B_{c}^{+} \to J/\psi \tau ^{+}\nu _{\tau })\)/\(\mathcal {B}(B_{c}^{+} \to J/\psi \mu ^{+}\nu _{\mu })\). Phys. Rev. Lett. 120(12), 121801 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    Aaij, R., et al.: Test of lepton universality using b + k + + decays. Phys. Rev. Lett. 113, 151601 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    Hiller, G., Schmaltz, M.: R K and future b s physics beyond the standard model opportunities. Phys. Rev. D90, 054014 (2014)ADSGoogle Scholar
  56. 56.
    Bečirević, D., Fajfer, S., Kočsnik, N., Olcyr, S.: Leptoquark model to explain the B-physics anomalies, R K and R D. Phys. Rev. D 94(11), 115021 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    Lees, J.P., et al.: Measurementdof branching fractions and rate asymmetries in the rare Decays B k (∗) l + l . Phys. Rev. D86, 032012 (2012)ADSGoogle Scholar
  58. 58.
    Aaij, R., et al.: Angular analysis of the b 0 k ∗0 μ + μ decay using 3 fb− 1 of integrated luminosity. JHEP 1602, 104 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    Wehle, S., et al.: Lepton-flavor-dependent angular analysis of B K , + . arXiv:1612.05014 (2016)

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.SLAC National Accelerator LaboratoryStanfordUSA

Personalised recommendations