Advertisement

Hyperfine Interactions

, 239:52 | Cite as

Review of absolute neutrino mass measurements

  • Martin Fertl
Article
  • 29 Downloads
Part of the following topical collections:
  1. Proceedings of the 7th Symposium on Symmetries in Subatomic Physics (SSP 2018), Aachen, Germany, 10-15 June 2018

Abstract

The discovery of neutrino flavor oscillations has firmly established that at least two of the three known neutrino mass eigenstates possess a non-vanishing rest mass. Complementary to cosmology and the search for neutrino-less double beta decay laboratory-based measurements of low-energy beta decays provide a direct and model-independent approach to measure the effective electron (anti-)neutrino mass. I have reviewed the recent progress of the field starting from the first molecular tritium spectrum measured with the current state of the art KATRIN experiment before discussing the development of new approaches to achieve the sensitivity required to cover the full neutrino mass parameter range allowed in the inverted mass ordering scheme. The new avenues opened by micro-calorimeteric measurements of the electron capture decay spectrum of 163Ho (ECHo, Holmes and Numecs) and by the new technology of cyclotron radiation emission spectroscopy in combination with molecular and atomic tritium sources have been presented.

Keywords

Tritium Neutrino mass Holmium 

Notes

Acknowledgements

The author thanks the organizers for the invitation to this marvelous symposium and his many colleagues of the Project 8 experiment as well as the KATRIN, ECHo and Holmes collaborations. The author is supported by the DOE, Office of Science, Office of Nuclear Physics, award DE-FG02-97ER41020.

References

  1. 1.
    Ahmad, Q.R., et al. (The SNO Collaboration): Phys. Rev. Lett. 87, 071301 (2001).  https://doi.org/10.1103/PhysRevLett.87.071301 ADSCrossRefGoogle Scholar
  2. 2.
    Fukuda, Y, et al. (Super-Kamiokande Collaboration): Phys. Rev. Lett. 81, 1562 (1998).  https://doi.org/10.1103/PhysRevLett.81.1562 ADSCrossRefGoogle Scholar
  3. 3.
    Tanabashi, M, et al. (Particle Data Group): Phys. Rev. D 98, 030001 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    The Planck Collaboration. arXiv:1807.06209 (2018)
  5. 5.
    Agostini, M., Benato, G., Detwiler, J.A.: Phys. Rev. D 96, 053001 (2017).  https://doi.org/10.1103/PhysRevD.96.053001 ADSCrossRefGoogle Scholar
  6. 6.
    Engel, J., Menendez, J.: Rep. Prog. Phys. 80(4), 046301 (2017). http://stacks.iop.org/0034-4885/80/i=4/a=046301 ADSCrossRefGoogle Scholar
  7. 7.
    Kraus, C., Bornschein, B., Bornschein, L., Bonn, J., Flatt, B., Kovalik, A., Ostrick, B., Otten, E.W., Schall, J.P., Thümmler, T., Weinheimer, C.: Eur. Phys. J. C - Particles and Fields 40(4), 447 (2005).  https://doi.org/10.1140/epjc/s2005-02139-7 CrossRefGoogle Scholar
  8. 8.
    Aseev, V.N., Belesev, A.I., Berlev, A.I., Geraskin, E.V., Golubev, A.A., Likhovid, N.A., Lobashev, V.M., Nozik, A.A., Pantuev, V.S., Parfenov, V.I., Skasyrskaya, A.K., Tkachov, F.V., Zadorozhny, S.V.: Phys. Rev. D 84, 112003 (2011).  https://doi.org/10.1103/PhysRevD.84.112003 ADSCrossRefGoogle Scholar
  9. 9.
    Picard, A., Backe, H., Barth, H., Bonn, J., Degen, B., Edling, T., Haid, R., Hermanni, A., Leiderer, P., Loeken, T., Molz, A., Moore, R., Osipowicz, A., Otten, E., Przyrembel, M., Schrader, M., Steininger, M., Weinheimer, C.: Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interactions with Materials and Atoms 63(3), 345 (1992).  https://doi.org/10.1016/0168-583X(92)95119-C. http://www.sciencedirect.com/science/article/pii/0168583X9295119C ADSCrossRefGoogle Scholar
  10. 10.
    The KATRIN collaboration, KATRIN design report (2004). https://www.katrin.kit.edu/publikationen/DesignReport2004-12Jan2005.pdf
  11. 11.
  12. 12.
    Gastaldo, L., et al. (ECHo collaboration): Eur. Phys. J. Spec. Top. 226(8), 1623 (2017).  https://doi.org/10.1140/epjst/e2017-70071-y CrossRefGoogle Scholar
  13. 13.
    Alpert, B., et al. (Holmes collaboration): Eur. Phys. J. C 75(3), 112 (2015).  https://doi.org/10.1140/epjc/s10052-015-3329-5 ADSCrossRefGoogle Scholar
  14. 14.
    Croce, M.P., et al. (NuMECS collaboration): J. Low Temp. Phys. 184(3), 958 (2016).  https://doi.org/10.1007/s10909-015-1451-2 ADSCrossRefGoogle Scholar
  15. 15.
    Monreal, B., Formaggio, J.A.: Phys. Rev. D 80, 051301 (2009).  https://doi.org/10.1103/PhysRevD.80.051301 ADSCrossRefGoogle Scholar
  16. 16.
    Asner, D.M., Bradley, R.F., de Viveiros, L., Doe, P.J., Fernandes, J.L., Fertl, M., Finn, E.C., Formaggio, J.A., Furse, D., Jones, A.M., Kofron, J.N., LaRoque, B.H., Leber, M., McBride, E.L., Miller, M.L., Mohanmurthy, P., Monreal, B., Oblath, N.S., Robertson, R.G.H., Rosenberg, L.J., Rybka, G., Rysewyk, D., Sternberg, M.G., Tedeschi, J.R., Thümmler, T., VanDevender, B.A., Woods, N.L.: Phys. Rev. Lett. 114, 162501 (2015).  https://doi.org/10.1103/PhysRevLett.114.162501 ADSCrossRefGoogle Scholar
  17. 17.
    Arenz, M., et al. (KATRIN collaboration): J. Instrum. 13(04), P04020 (2018). http://stacks.iop.org/1748-0221/13/i=04/a=P04020 CrossRefGoogle Scholar
  18. 18.
    Parno, D.: KATRIN: toward a high-precision neutrino-mass determination with tritium. In: Talk at the XXVIII International Conference on Neutrino Physics and Astrophysics, 4–9 June, 2018, Heidelberg, Germany.  https://doi.org/10.5281/zenodo.1287933 (2018)
  19. 19.
  20. 20.
    Gastaldo, L.: Determining the electron neutrino mass with ho-163. In: Talk at the XXVIII International Conference on Neutrino Physics and Astrophysics, 4–9 June, 2018, Heidelberg, Germany.  https://doi.org/10.5281/zenodo.1286950 (2018)
  21. 21.
    Faessler, A., Gastaldo, L., Šimkovic, F.: J. Phys. G: Nucl. Part. Phys. 42(1), 015108 (2015). http://stacks.iop.org/0954-3899/42/i=1/a=015108 ADSCrossRefGoogle Scholar
  22. 22.
    Robertson, R.G.H.: Phys. Rev. C 91, 035504 (2015).  https://doi.org/10.1103/PhysRevC.91.035504 ADSCrossRefGoogle Scholar
  23. 23.
    Faessler, A., Enss, C., Gastaldo, L., Šimkovic, F.: Phys. Rev. C 91, 064302 (2015).  https://doi.org/10.1103/PhysRevC.91.064302 ADSCrossRefGoogle Scholar
  24. 24.
    Faessler, A., Gastaldo, L., Šimkovic, F.: Phys. Rev. C 95, 045502 (2017).  https://doi.org/10.1103/PhysRevC.95.045502 ADSCrossRefGoogle Scholar
  25. 25.
    Braß, M., Enss, C., Gastaldo, L., Green, R.J., Haverkort, M.W.: Phys. Rev. C 97, 054620 (2018).  https://doi.org/10.1103/PhysRevC.97.054620 ADSCrossRefGoogle Scholar
  26. 26.
    Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, C.E., Enss, C., Filianin, P.E., Gastaldo, L., Goncharov, M., Köster, U., Lautenschläger, F., Novikov, Y.N., Rischka, A., Schüssler, R.X., Schweikhard, L., Türler, A.: Phys. Rev. Lett. 115, 062501 (2015).  https://doi.org/10.1103/PhysRevLett.115.062501 ADSCrossRefGoogle Scholar
  27. 27.
    Ranitzsch, P.C.O., Hassel, C., Wegner, M., Hengstler, D., Kempf, S., Fleischmann, A., Enss, C., Gastaldo, L., Herlert, A., Johnston, K.: Phys. Rev. Lett. 119, 122501 (2017).  https://doi.org/10.1103/PhysRevLett.119.122501 ADSCrossRefGoogle Scholar
  28. 28.
    Esfahani, A.A., Asner, D.M., Böser, S., Cervantes, R., Claessens, C., de Viveiros, L., Doe, P.J., Doeleman, S., Fernandes, J.L., Fertl, M., Finn, E.C., Formaggio, J.A., Furse, D., Guigue, M., Heeger, K.M., Jones, A.M., Kazkaz, K., Kofron, J.A., Lamb, C., LaRoque, B.H., Machado, E., McBride, E.L., Miller, M.L., Monreal, B., Mohanmurthy, P., Nikkel, J.A., Oblath, N.S., Pettus, W.C., Robertson, R.G.H., Rosenberg, L.J., Rybka, G., Rysewyk, D., Saldaña, L., Slocum, P.L., Sternberg, M.G., Tedeschi, J.R., Thümmler, T., VanDevender, B.A., Vertatschitsch, L.E., Wachtendonk, M., Weintroub, J., Woods, N.L., Young, A., Zayas, E.M.: J. Phys. G: Nucl. Part. Phys. 44(5), 054004 (2017). http://stacks.iop.org/0954-3899/44/i=5/a=054004 ADSCrossRefGoogle Scholar
  29. 29.
    Oblath, N.: Project 8: Measuring the tritium beta-decay spectrum using cyclotron radiation emission spectroscopy. In: Poster at the XXVIII International Conference on Neutrino Physics and Astrophysics, 4–9 June, 2018, Heidelberg.  https://doi.org/10.5281/zenodo.1300805 (2018)
  30. 30.
    VanDevender, B.: Project 8 phase iii design progress. In: Poster at the XXVIII International Conference on Neutrino Physics and Astrophysics, 4–9 June, 2018, Heidelberg.  https://doi.org/10.5281/zenodo.1300958 (2018)
  31. 31.
    Lindman, A.: Concept for an atomic tritium experiment: Phase iv of project 8. In: Poster at the XXVIII International Conference on Neutrino Physics and Astrophysics, 4–9 June, 2018. Heidelberg.  https://doi.org/10.5281/zenodo.1300920 (2018)

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Experimental Nuclear Physics and AstrophysicsUniversity of WashingtonSeattleUSA

Personalised recommendations