Advertisement

Hyperfine Interactions

, 239:54 | Cite as

Neutrino-less double beta decay experiments

  • Oliviero CremonesiEmail author
Article
Part of the following topical collections:
  1. Proceedings of the 7th Symposium on Symmetries in Subatomic Physics (SSP 2018), Aachen, Germany, 10–15 June 2018

Abstract

The observation of neutrinoless double beta decay would unambiguosly demonstrate that neutrinos are Majorana particles and would provide unique information about the ordering and absolute scale of neutrino masses. This very rare decay is actively searched for in a number of candidate isotopes. It violates lepton-number and is predicted by many extensions of the standard model. The most recent experimental results are reviewed. The technological advances and the most compelling requirements for the new generation of experiments are discussed.

Keywords

Neutrino Lepton number Rare decays 

References

  1. 1.
    Majorana, E.: Nuovo Cim. 14, 322 (1937)CrossRefGoogle Scholar
  2. 2.
    Dell’Oro, S., Marcocci, S., Viel, M., Vissani, F.: Adv. High Energy Phys. 2016, 2162659 (2016)CrossRefGoogle Scholar
  3. 3.
    Patrignani, C., et al.: Particle Data Group. Chin Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Cremonesi, O., Pavan, M.: Adv. High Energy Phys. 2014, 951432 (2013)Google Scholar
  5. 5.
    Robertson, R. G. H.: Mod. Phys. Lett. A 28, 1350021 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Albert, J. B., et al.: Phys. Rev. Lett. 120, 072701 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Gando, A., et al.: Phys. Rev. Lett. 117, 082503 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Alfonso, K.: Phys. Rev. Lett. 115, 102502 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Barea, J., Kotila, J., Iachello, F.: Phys. Rev. C 91, 034304 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Kotila, J., Iachello, F.: Phys. Rev. C 85, 034316 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Engel, J., Menendez, J.: Rept. Prog. Phys. 80, 046301 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Agostini, M., et al.: Phys. Rev. Lett. 120, 132503 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Aalseth, C.E., et al.: Phys. Rev. Lett. 120, 132502 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Alduino, C., et al.: Phys. Rev. Lett. 120, 132501 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Azzolini, O., et al.: Phys. Rev. Lett. 120, 232502 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Gomez-Cadenas, J. J., Martın-Albo, J: PoS GSSI 14, 004 (2014)Google Scholar
  17. 17.
    Stoica, S., Mirea, M.: Phys. Rev. C 88, 037303 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Stefanik, D., Dvornicky, R., Simkovic, F., Vogel, P.: Phys. Rev. C 92, 055502 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Faessler, A.: J. Phys. (Conf. Ser.) 337, 012065 (2012)CrossRefGoogle Scholar
  20. 20.
    Barea, J., Kotila, J., Iachello, F.: Phys. Rev. C 87, 014315 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Suhonen, J., Civitarese, O.: Phys. Lett. B 725, 153 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Rodin, V. A., Faessler, A., Simkovic, F., Vogel, P.: Nucl. Phys. A 766, 107 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Faessler, A., Fogli, G., Lisi, E., Rodin, V.A., Rotunno, A.M., Simkovic, F.: J. Phys. G 35, 075104 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Fujita, J.I., Ikeda, K.: Nucl. Phys. 67, 145 (1965)CrossRefGoogle Scholar
  25. 25.
    Menendez, J., Gazit, D., Schwenk, A.: Phys. Rev. Lett. 107, 062501 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Menendez, J., Poves, A., Caurier, E., Nowacki, F.: Nucl. Phys. A 818, 139 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Konieczka, M., Baczyk, P., Satula, W.: Phys. Rev. C 93, 042501 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Engel, J., Simkovic, F., Vogel, P.: Phys. Rev. C 89, 064308 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.INFN - Sez. Milano BicoccaMilanoItaly

Personalised recommendations