Advertisement

Hyperfine Interactions

, 239:45 | Cite as

Gravity, antimatter and the Dirac-Milne universe

  • Gabriel ChardinEmail author
  • Giovanni Manfredi
Article
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12–16 March 2018

Abstract

We review the main arguments against antigravity, a different acceleration of antimatter relative to matter in a gravitational field, discussing and challenging Morrison’s, Good’s and Schiff’s arguments. Following Price, we show that, very surprisingly, the usual expression of the Equivalence Principle is violated by General Relativity when particles of negative mass are supposed to exist, which may provide a fundamental explanation of MOND phenomenology, obviating the need for Dark Matter. Motivated by the observation of repulsive gravity under the form of Dark Energy, and by the fact that our universe looks very similar to a coasting (neither decelerating nor accelerating) universe, we study the Dirac-Milne cosmology, a symmetric matter-antimatter cosmology where antiparticles have the same gravitational properties as holes in a semiconductor. Noting the similarities with our universe (age, SN1a luminosity distance, nucleosynthesis, CMB angular scale), we focus our attention on structure formation mechanisms, finding strong similarities with our universe. Additional tests of the Dirac-Milne cosmology are briefly reviewed, and we finally note that a crucial test of the Dirac-Milne cosmology will be soon realized at CERN next to the ELENA antiproton decelerator, possibly as early as fall 2018, with the AEgIS, ALPHA-g and Gbar antihydrogen gravity experiments.

Keywords

Antimatter Gravity Cosmology Dark energy Equivalence principle 

References

  1. 1.
    Perez, P., Doser, M., Bertsche, W.: Does antimatter fall up? https://cds.cern.ch/record/2243009/files/vol57-issue1-p039-e.pdf
  2. 2.
    Kellerbauer, A., Amoretti, M., Belov, A., Bonomi, G., Boscolo, I., Brusa, R., Büchner, M., Byakov, V., Cabaret, L., Canali, C., et al.: Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 351 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Bertsche, W.A.: Prospects for comparison of matter and antimatter gravitation with ALPHA-g. Phil. Trans. R. Soc. A 376, 20170265 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Indelicato, P., Chardin, G., Grandemange, P., Lunney, D., Manea, V., Badertscher, A., Crivelli, P., Curioni, A., Marchionni, A., Rossi, B., et al.: The Gbar project, or how does antimatter fall? Hyperfine Interact. 228, 141 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Smorra, C., et al.: A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Schiff, L.I.: Gravitational properties of antimatter. Proc. Natl. Acad. Sci 45, 69 (1959)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Morrison, P.: Approximate nature of physical symmetries. Am. J. Phys. 26, 358 (1958)ADSCrossRefGoogle Scholar
  8. 8.
    Good, M.L.: K\(^{0}_{2}\) and the equivalence principle. Phys. Rev. 121, 311 (1961)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Price, R.H.: Negative mass is positively amusing. Am. J. Phys. 61, 216 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Benoit-Lévy, A., Chardin, G.: Introducing the Dirac-Milne universe. A&A 537, A78 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Tegmark, M., et al.: The three-dimensional power spectrum of galaxies from the Sloan digital sky survey. Ap. J. 606, 702 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Nieto, M.M., Goldman, T.: The arguments against ‘antigravity’ and the gravitational acceleration of antimatter. Phys. Rep. 205, 221 (1991). and references thereinADSCrossRefGoogle Scholar
  13. 13.
    Tsidil’kovskii, I.M.: Electrons and holes in an inertial-force field. Sov. Phys. Uspekhi 18, 161 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    Dubinski, J., da Costa, L.N., Goldwirth, D.S., Lecar, M., Piran, T.: Void evolution and the large-scale structure. Ap. J. 410, 458 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    Piran, T.: On gravitational repulsion. Gen. Rel. Grav. 29, 1363 (1997)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Chardin, G., Rax, J.-M.: CP violation: A matter of antigravity? Phys. Lett. B 282, 256 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Scherk, J.: Antigravity: A crazy idea? Phys. Lett. B 88, 265 (1979)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Bell, J.S.: In: Bloch, P., Pavlopoulos, P., Klapisch, R (eds.) Fundamental Symmetries. Plenum Press (1987)Google Scholar
  19. 19.
    Adelberger, E.G., Gundlach, J.H., Heckel, B.R., Hoedl, S., Schlamminger, S.: Torsion balance experiments: a low-energy frontier of particle physics. Prog. Part. Nucl. Phys. 62, 102 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Touboul, P., et al.: MICROSCOPE mission: first results of a space test of the equivalence principle. Phys. Rev. Lett. 119, 231101 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Alves, D.S.M., Jankowiak, M., Saraswat, P.: Experimental constraints on the free fall acceleration of antimatter, arXiv:0907.4110 (2009)
  22. 22.
    Ulmer, S., et al.: High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Bondi, H.: Negative mass in general relativity. Rev. Mod. Phys. 29, 423 (1957)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? J. High Energy Phys. 2013, 62 (2013). arXiv:1207.3123 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983)ADSCrossRefGoogle Scholar
  26. 26.
    Blanchet, L., Le Tiec, A.: Model of dark matter and dark energy based on gravitational polarization. Phys. Rev. D 78, 024031 (2008). arXiv:0804.3518 ADSCrossRefGoogle Scholar
  27. 27.
    Holstein, B.R.: Klein’s paradox. Am. J. Phys. 66, 507 (1998)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Goldman, T., Nieto, M.M., Sandberg, V.: Kaons, quantum mechanics and gravity. Mod. Phys. Lett. 7, 3455 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Christenson, J.H., Cronin, J.W., Fitch, V.L., Turlay, R.: Evidence for the 2π-decay of the K\(^{0}_{2}\) meson. Phys. Rev. Lett. 13, 138 (1964)ADSCrossRefGoogle Scholar
  30. 30.
    Bell, J.S., Perring, J.K.: 2π-decay of the K\(^{0}_{2}\) meson. Phys. Rev. Lett. 13, 348 (1964)ADSCrossRefGoogle Scholar
  31. 31.
    Omnès, R.: The possible role of elementary particle physics in cosmology. Phys. Rep. 3, 1 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    Cohen, A.G., de Rujula, A., Glashow, S.L.: A matter-antimatter universe? Ap. J. 495, 539 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65, 45 (1979)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80, 381 (1981)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Ap. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrop. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Barcelo, C., Visser, M.: Twilight for the energy conditions? Int. J. Mod. Phys. D11, 1553 (2002)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Mbarek, S., Paranjape, M.B.: Negative mass bubbles in de Sitter spacetime. Phys. Rev. D 90, 101502 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Morris, M.S., Thorne, K.S., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    Hawking, S.W.: On the Hoyle-Narlikar theory of gravitation. R. Soc. London Proc. Series A 286, 313 (1965)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Hoyle, F., Narlikar, J.V.: Mach’s principle and the creation of matter. Proc. R. Soc. Lond. A 273, 1 (1963)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    The Planck Collaboration, Akrami, Y., et al.: Planck 2018 results. I. Overview and the cosmological legacy of Planck, arXiv:1807.06205, submitted to A&A
  43. 43.
    Nielsen, J.T., Guffanti, A., Sarkar, S.: Marginal evidence for cosmic acceleration from Type Ia supernovae. Sci. Rep. 6, 35596 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Tutusaus, I., Lamine, B., Dupays, A., Blanchard, A.: Is cosmic acceleration proven by local cosmological probes? A&A 602, A73 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Milne, E.A.: World structure and the expansion of the universe. Z. Astrophys. 6, 1 (1933)ADSzbMATHGoogle Scholar
  46. 46.
    Melia, F., Shevchuk, A.S.H.: The Rh = c t universe. MNRAS 419, 2579 (2012). arXiv:1109.5189 ADSCrossRefGoogle Scholar
  47. 47.
    Chodorowski, M.J.: Cosmology under Milne’s shadow. Publ. Astron. Soc. Australia 22, 287 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Rood, R.T., Bania, T.M., Baiser, D.S.: The saga of 3He. Science 95, 804 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    Manfredi, G., Rouet, J.-L., Miller, B., Chardin, G.: Cosmological structure formation with negative mass. Phys. Rev. D 98, 023514 (2018). arXiv:1804.03067 ADSCrossRefGoogle Scholar
  50. 50.
    Ahmadi, M., et al.: The ALPHA Collaboration, Observation of the 1S-2S transition in trapped antihydrogen. Nature 541, 506 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    Charman, A.E., et al.: The ALPHA Collaboration, Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nature Comm. 4, 1785 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CNRSParisFrance
  2. 2.Université de Strasbourg, CNRS, IPCMS UMR 7504StrasbourgFrance

Personalised recommendations