Advertisement

Hyperfine Interactions

, 239:43 | Cite as

Beyond antihydrogen: testing CPT with the molecular antihydrogen ion

  • Edmund G. MyersEmail author
Article
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018

Abstract

Measurements of Zeeman, Zeeman-hyperfine and ro-vibrational transitions in \(\bar {H}_{2}^{-}(\bar {p}e^{+}\bar {p})\) compared to \(H_{2}^{+}\) have the potential for more precise tests of CPT than can be obtained from antiprotons and antihydrogen. In particular, measurements of ro-vibrational transitions have a potential sensitivity to a difference between antiproton and proton mass three orders of magnitude higher than antihydrogen/hydrogen. Methods are outlined for precision measurements on a single \(\bar {H}_{2}^{-}\) or \({H}_{2}^{+}\) ion in a cryogenic Penning trap, with non-destructive state identification using the continuous Stern-Gerlach effect or changes in mass. \(\bar {H}_{2}^{-}\) can be produced using the \(\bar {H}^{+}+\bar {p} \rightarrow \bar {H}_{2}^{-} + e^{+}\) reaction.

Keywords

Tests of fundamental symmetries Antiprotons Penning traps Molecular spectroscopy 

Notes

Acknowledgements

The author thanks G. Gabrielse for supporting visits to CERN and members of ATRAP for their hospitality. Support from the US National Science Foundation under PHY-1403725 is gratefully acknowledged.

References

  1. 1.
    Lüders, G.: Ann. Phys. 2, 1 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    Gabrielse, G., et al.: Phys. Rev. Lett. 82, 3198 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Hori, M., et al.: Science 354, 610 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    DiSciacca, J., et al.: Phys. Rev. Lett. 110, 130801 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Smorra, C., et al.: Nature 550, 371 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Ahmadi, M., et al.: Nature 557, 71 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Ahmadi, M., et al.: Nature 548, 66 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Ulmer, S., et al.: Nature 524, 196 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Parthey, C.G., et al.: Phys. Rev. Lett. 107, 203001 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Diermaier, M., et al.: Nat. Commun. 548, 15749 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Hilico, L., Billy, N., Grémaud, B., Delande, D.: Eur. Phys. J. D12, 449 (2000)ADSGoogle Scholar
  12. 12.
    Brown, L.S., Gabrielse, G.: Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    Myers, E.G.: Int. J. Mass Spectrom. 349–350, 107 (2013)CrossRefGoogle Scholar
  14. 14.
    Werth, G., Häffner, H., Quint, W.: Adv. At. Mol. Opt. Phys. 48, 191 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Sturm, S., et al.: Nature (London) 506, 467 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Cornell, E.A., et al.: Phys. Rev. Lett. 63, 1674 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    Sturm, S., et al.: Phys. Rev. Lett. 107, 143003 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Brown, J.M., Carrington, A: Rotational Spectroscopy of Diatomic Molecules. Cambridge (2003)Google Scholar
  19. 19.
    Korobov, V.I., Hilico, L., Karr, J.-Ph.: Phys. Rev. A 74, 040502(R) (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Ramsey, N.F.: Molecular Beams. Clarendon Press, Oxford (1956)Google Scholar
  21. 21.
    Bollinger, J.J., et al.: Phys. Rev. Lett. 54, 1000 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    Hilico, L., et al.: Phys. B: At. Mol. Opt. Phys. 34, 491 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Karr, J.-Ph., et al.: Phys. Rev. A 94, 050501(R) (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Schiller, S., Bakalov, D., Korobov, V.I.: Phys. Rev. Lett. 113, 023004 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Myers, E.G.: Phys. Rev. A 98, 010101(R) (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Smith, J.A., et al.: Phys. Rev. Lett. 120, 143002 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Chou, C.-W., et al.: Nature 545, 203 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Leibfried, D.: Appl. Phys. B 123, 10 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Janev, R.K., Reiter, D., Samm, U.: Collision processes in low-temperature hydrogen plasmas. Berichte des Forschungszentrums Julich 4105, ISSN: 0944-2952Google Scholar
  30. 30.
    Zammit, M.C., et al.: Astr. Phys. J. 851, 164 (2017)Google Scholar
  31. 31.
    Perez, P., et al.: Hyperfine Interact. 233, 21 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Urbain, X., et al.: J. Phys. B: At. Mol. Phys. 19, L273 (1986)CrossRefGoogle Scholar
  33. 33.
    Andresen, G.B., et al.: Nature 468, 673 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Richerme, P., et al.: Phys. Rev. A 87, 023422 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Posen, A., Dalgarno, A., Peek, J.: At. Data Nucl. Data Tables 28, 265 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    Pilón, H.O., Baye, D.: J. Phys. B: At. Mol. Opt. Phys. 45, 065101 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Andrianarijaona, V.M., Jureta, J., Urbain, X: Abstract of ICPEAC (2003)Google Scholar
  38. 38.
    Karr, J.-P.: personal communication (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Physics DepartmentFlorida State UniversityTallahasseeUSA

Personalised recommendations