Advertisement

Hyperfine Interactions

, 239:44 | Cite as

Single-photon laser spectroscopy of cold antiprotonic helium

  • Masaki HoriEmail author
Open Access
Article
  • 51 Downloads
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018

Abstract

Some laser spectroscopy experiments carried out by the Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration to measure the single-photon transition frequencies of antiprotonic helium (\(\overline {p}\text {He}^{+}\equiv \overline {p}+\text {He}^{2+}+e^{-}\)) atoms are reviewed. The \(\overline {p}\text {He}^{+}\) were cooled to temperature T = 1.5–1.7 K by buffer-gas cooling in a cryogenic gas target, thus reducing the thermal Doppler width in the single-photon resonance lines. The antiproton-to-electron mass ratio was determined as \(M_{\overline {p}}/m_{e}= 1836.1526734(15)\) by comparisons with the results of three-body quantum electrodynamics calculations. This agreed with the known proton-to-electron mass ratio.

Keywords

Antiprotonic helium CPT symmetry Exotic atoms 

Notes

Acknowledgements

Open access funding provided by Max Planck Society. We are deeply indebted to the ASACUSA collaboration and to the CERN PS and AD operation teams. We thank V.I. Korobov. This work was supported by the Max-Planck-Gesellschaft.

References

  1. 1.
    Korobov, V.I., Hilico, L., Karr, J.-P.: m α 7-order corrections in the hydrogen molecular ions and antiprotonic helium. Phys. Rev. Lett. 112, 103003 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Korobov, V.I., Hilico, L., Karr, J.-P.: Theoretical transition frequencies beyond 0.1 ppb accuracy in H\(^{+}_{2}\), HD+, and antiprotonic helium. Phys. Rev. A 89, 032511 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Hu, M.-H., et al.: Variational calculation of energy levels for metastable states of antiprotonic helium. Chem. Phys. Lett. 654, 114 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Hori, M., et al.: Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 475, 484 (2011)CrossRefGoogle Scholar
  5. 5.
    Hori, M., et al.: Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio. Science 354, 610 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Kobayashi, T., et al.: Observation of the 1154.9 nm transition of antiprotonic helium. J. Phys. B: At. Mol. Opt. Phys. 46, 245004 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Friedreich, S., et al.: Microwave spectroscopic study of the hyperfine structure of antiprotonic 3He. J. Phys. B: At. Mol. Opt. Phys. 46, 125003 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Farnham, D.L., Van Dyck, R.S. Jr., Schwinberg, P.B.: Determination of the electron’s atomic mass and the proton/electron mass ratio via Penning trap mass spectroscopy. Phys. Rev. Lett. 75, 3598 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Beier, T., et al.: New Determination of the Electron’s Mass. Phys. Rev. Lett. 88, 011603 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Verdú, J., et al.: Electronic g factor of hydrogenlike oxygen 16 O 7+. Phys. Rev. Lett. 92, 093002 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Sturm, S., et al.: High-precision measurement of the atomic mass of the electron. Nature 506, 467 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Heiße, F., et al.: High-precision measurement of the proton’s atomic mass. Phys. Rev. Lett. 119, 033001 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Biesheuvel, J., et al.: Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 7, 10385 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Koelemeij, J.C.J., et al.: Vibrational spectroscopy of HD+ with 2-ppb accuracy. Phys. Rev. Lett. 98, 173002 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Alighanbari, S., Hansen, M.G., Korobov, V.I., Schiller, S.: Rotational spectroscopy of cold and trapped molecular ions in the Lamb-Dicke regime. Nat. Phys. 14, 555 (2018)CrossRefGoogle Scholar
  16. 16.
    Ahmadi, M., et al.: Observation of the 1S-2S transition in trapped antihydrogen. Nature 541, 506 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Ahmadi, M., et al.: Observation of the hyperfine spectrum of antihydrogen. Nature 548, 66 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Gabrielse, G., et al.: Trapped antihydrogen in its ground state. Phys. Rev. Lett. 108, 113002 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Salumbides, E.J., Ubachs, W., Korobov, V.I.: Bounds on fifth forces at the sub-Å length scale. J. Mol. Spect. 300, 65 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Murata, J., Tanaka, S.: A review of short-range gravity experiments in the LHC era. Class Quantum Grav. 32, 033001 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Brax, P., Fichet, S., Pignol, G.: Bounding quantum dark forces. Phys. Rev. D 97, 115034 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Fichet, S.: Quantum forces from dark matter and where to find them. Phys. Rev. Lett. 120, 131801 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Ficek, F., et al.: Constraints on exotic spin-dependent interactions between matter and antimatter from antiprotonic helium spectroscopy. Phys. Rev. Lett. 120, 183002 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Hori, M., Walz, J.: Physics at CERN’s antiproton decelerator. Prog. Part. Nucl. Phys. 72, 206 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Sakimoto, K.: Formation of antiprotonic helium \(\overline {p}\text {He}^{+}\) and ionization in low-energy collisions of \(\overline {p}\) with He in the ground 11S and metastable 23S and 21S states. Phys. Rev. A 91, 042502 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Korobov, V.I., Zhong, Z.-X., Tian, Q.-L.: Leading term of the He-\(\overline {p}\text {He}^{+}\) long-range interaction. Phys. Rev. A 92, 052517 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Adamczak, A., Bakalov, D.: Shift and broadening of resonance lines of antiprotonic helium atoms in solid helium. Phys. Rev. A 90, 054501 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2010. Rev. Mod. Phys. 84, 1527 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Pohl, R., et al.: The size of the proton. Nature 466, 213 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Crivelli, P., Cooke, D., Heiss, M.W.: Antiproton charge radius. Phys. Rev. D 94, 052008 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Kohno, M., Weise, W.: Proton-antiproton scattering and annihilation into two mesons. Nucl. Phys. A454, 429 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    Klempt, E., Bradamante, F., Martin, A., Richard, J.-M.: Antinucleon-nucleon interaction at low energy: scattering and protonium. Phys. Rep. 368, 119 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Friedman, E., Gal, A., Mares̆, J.: Antiproton-nucleus potentials from global fits to antiprotonic X-rays and radiochemical data. Nucl. Phys. A761, 283 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Larionov, A.B., Lenske, H.: Elastic scattering, polarization and absorption of relativistic antiprotons on nuclei. Nucl. Phys. A957, 450 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Hori, M., et al.: Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of \(\overline {p}\text {He}^{+}\). Phys. Rev. Lett. 96, 243401 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Hori, M., et al.: Calculation of transition probabilities and ac Stark shifts in two-photon laser transitions of antiprotonic helium. Phys. Rev. A 81, 062508 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Badertscher, A., et al.: Experimental determination of the kinetic energy distribution of π p atoms in liquid hydrogen. Phys. Lett. B 392, 278 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Aghai-Khozani, H., et al.: First experimental detection of antiproton in-flight annihilation on nuclei at 130 keV. Eur. Phys. J. Plus 127, 125 (2012)CrossRefGoogle Scholar
  39. 39.
    Corradini, M., et al.: Experimental apparatus for annihilation cross-section measurements of low energy antiprotons. Nucl. Instrum. Methods A 711, 12 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Sótér, A., et al.: Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations. Rev. Sci. Instrum. 85, 023302 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Todoroki, K., et al.: Instrumentation for measurement of in-flight annihilations of 130 keV antiprotons on thin target foils. Nucl. Instrum. Methods A 835, 110 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Aghai-Khozani, H., et al.: Measurement of the antiproton-nucleus annihilation cross-section at low energy. Nucl. Phys. A970, 366 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    Hori, M., Dax, A.: Chirp-corrected, nanosecond Ti: Sapphire laser with 6 MHz linewidth for spectroscopy of antiprotonic helium. Opt. Lett. 34, 1273 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Pachucki, K., Czarnecki, A., Jentschura, U.D., Yerokhin, V.A.: Complete two-loop correction to the bound-electron g factor. Phys. Rev. A 72, 022108 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Gabrielse, G., et al.: Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    Ulmer, S., et al.: High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Hughes, R.J., Deutch, B.I.: Electric charges of positrons and antiprotons. Phys. Rev. Lett. 69, 578 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    Hori, M., Sótér, A., Korobov, V.I.: Proposed method for laser spectroscopy of pionic helium atoms to determine the charged-pion mass. Phys. Rev. A 89, 042515 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Korobov, V.I., Bakbaev, A.K., Aznabayev, D.T., Zhaugasheva, S.A.: Polarizability of the pionic helium atom. J. Phys. B: At. Mol. Opt. Phys. 48, 245006 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Obreshkov, B., Bakalov, D.: Collisional shift and broadening of the transition lines in pionic helium. Phys. Rev. A 93, 062505 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    Trassinelli, M., et al.: Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms. Phys. Lett. B 759, 583 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations