Advertisement

Hyperfine Interactions

, 239:46 | Cite as

Oxidation and passivating effect in tin(II) fluoride and chloride fluoride solid solutions: a 119Sn Mössbauer study

  • Georges DénèsEmail author
  • Abdualhafed Muntasar
  • M. Cecilia Madamba
  • Hocine Merazig
Article
  • 21 Downloads
Part of the following topical collections:
  1. Proceedings of the 4th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2018), Zadar, Croatia, 27-31 May 2018

Abstract

Divalent tin fluorides and chloride fluorides appear to be stable relative to oxidation to tetravalent tin at ambient temperature. X-ray diffraction shows only the line of the tin(II) compound, however the 119Sn Mössbauer spectrum of all tin(II) polycrystalline samples has a small broad peak at ca. 0 mm/s. This is the case of polycrystalline α −SnF2, while the spectrum of a large single crystal polished sufficiently thin shows only the tin(II) doublet, with no SnO2 peak at 0 mm/s. This shows that there is surface oxidation of each solid particle, to give a thin amorphous layer of SnO2 stannic oxide. However, the Mössbauer peak of SnO2 does not grow with prolonged exposure to air at ambient temperature, therefore it must be assumed that the layer of SnO2 has a passivating effect, however oxidation increases at higher temperatures. We have investigated in this work the passivating effect of a layer of SnO2 in two types of solid solutions: (i) in the fluorite type M1−xSnxF2, where the amount of tin at low x values is not sufficient to provide full coverage of the surface of the particles, and (ii) in the PbClF type doubly disordered solid solution, Ba1−xSnxCl1+yF1−y. It was found that passivation works well in the M1−xSnxF2 solid solution, however most of the time, it does not work so well for Ba1−xSnxCl1+yF1−y where it is strongly dependent on the method of preparation and the bonding strength, as shown by the variation versus the tin(II) recoil-free fraction.

Keywords

Mössbauer spectroscopy Tin(II) fluorides and chloride fluorides Surface oxidation Passivation Solid solutions Bonding type 

Notes

Acknowledgements

This work is dedicated to the memory of Prof. Krzysztof Ruebenbauer, Pedagogical University, Krakow, Poland, who passed away on April 23, 2018. He contributed so much to our understanding of the Mössbauer effect in divalent tin materials.

This work was made possible by the support of Concordia University and the Natural Science and Engineering Research Council of Canada. Grateful thanks are also due to the Procter and Gamble Co. (Mason, Ohio) for supporting our Mössbauer laboratory.

References

  1. 1.
    Dirac, P.A.M.: Principles of Quantum Mechanics. International Series of Monographs on Physics, 4th edn., p. 255 Oxford University Press (1982)Google Scholar
  2. 2.
    Dénès, G.: The “Bent Copper Tube”: an inexpensive and convenient reactor for fluorides of metals in suboxidation states. J. Solid State Chem. 77, 54–59 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    Birchall, T., Dénès, G., Ruebenbauer, K., Pannetier, J.: A tin-119 Mössbauer study of the phase transitions in SnF2. J. Chem. Soc. Dalton, 1831–1836 (1981)Google Scholar
  4. 4.
    Dénès, G., Bell, M.F., Sayer, M.: BaSnF4 – a new fluoride ionic conductor with the α–PbSnF4 structure. Solid State Ion. 13, 213–219 (1984)CrossRefGoogle Scholar
  5. 5.
    Birchall, T., Dénès, G., Ruebenbauer, K., Pannetier, J.: Tin-119 Mössbauer spectroscopic study of a single crystal of α–SnF2 and partially oriented α–PbSnF4. J. Chem. Soc. Dalton, 2296–2299 (1981)Google Scholar
  6. 6.
    Birchall, T., Dénès, G: A 19F, 119Sn nuclear magnetic resonance and 119Sn Mössbauer study of the SnF2 - MF – H2O system. Can. J. Chem. 62, 591–595 (1984)CrossRefGoogle Scholar
  7. 7.
    Lengyel, L., Homonnay, Z., Kuzmann, E., Klencsar, Z., Sipos, P., Bajnoczi, E.G., Palinko, J.: Goldanskii-Karyagin effect in hyperalkaline tin(II) hydroxide. J. Radioanal. Nucl. Chem. 307, 1195–1201 (2016)CrossRefGoogle Scholar
  8. 8.
    Dénès, G., Madamba, M.C.: X-ray diffraction study of phase transformations in superionic PbSnF4 upon milling and subsequent annealing. Mater. Struct. 3, 227–245 (1996)Google Scholar
  9. 9.
    Dénès, G., Ruebenbauer, K.: GMFP5, an extension of GMFP 58 to five hyperfine sites, unpublished resultsGoogle Scholar
  10. 10.
    Ruebenbauer, K., Birchall, T.: A computer programme for the evaluation of Mössbauer data. Hyperf. Interact. 7, 125–133 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    Galy, J., Meunier, G., Andersson, S., Aström, A.: Stéréochimie des éléments comportant des paires non liées: Ge(II), As(III), Se(IV), Br(V), Sn(II), Sb(III), Te(IV), I(V), Xe(VI), Pb(II) et Bi(III) (oxydes, fluorures et oxyfluorures). J. Solid State Chem. 13, 142–159 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    Gillespie, R.J., Nyholm, R.S.: Inorganic stereochemistry. Quart. Rev. Chem. Soc. 11, 339–380 (1957)CrossRefGoogle Scholar
  13. 13.
    Brown, I.D.: Bond valence as an aid to understanding the stereochemistry of O and F complexes of Sn(II), Sb(III), Te(IV), I(V) and Xe(VI). J. Solid State Chem. 11, 214–233 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    Dénès, G., Pannetier, J., Lucas, J., Le Marouille, J.Y.: About SnF2 stannous fluoride. I. Crystallochemistry of α–SnF2. J. Sol. State Chem. 30, 335–343 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    Birchall, T., Dénès, G., Ruebenbauer, K., Pannetier, J.: Goldanskii-Karyagin effect in α–SnF2: a neutron diffraction and Mössbauer absorption study. Hyp. Interact. 30, 167–183 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    Goldanskii, V.I., Marakov, E.F., Stukan, R.A., Samakosova, T.N., Trakhtanov, V.A., Khrapov, VV: The Mössbauer effect and its applications. Proc. Acad. Sci. USSR 156, 474 (1964)Google Scholar
  17. 17.
    Greenwood, N.N., Gibb, T.C.: Mössbauer Spectroscopy, p 375. Chapman and Hall, London (1971)CrossRefGoogle Scholar
  18. 18.
    Dénès, G.: About SnF2 stannous fluoride. I. Phase transitions. Mater. Res. Bull. 15, 807–819 (1980)CrossRefGoogle Scholar
  19. 19.
    Weast, R.C., Astle, M.J. (eds.): CRC Handbook of Chemistry and Physics, 61st edn. CRC Press, Boca Raton (Unknown Month 1980)Google Scholar
  20. 20.
    Muntasar, A., Le Roux, D., Dénès, G.: Stabilization of the unhybridized Sn2+ stannous ion in the BaClF structure and its characterization by 119Sn Mössbauer spectroscopy. J. Radioanal. Nucl. Chem. 190, 431–437 (1995)CrossRefGoogle Scholar
  21. 21.
    Dénès, G., Muntasar, A.: X-ray diffraction and Mössbauer spectroscopic studies of Sn/Ba and Cl/F substitutions in BaClF. Mater. Struct. 3, 246 (1996)Google Scholar
  22. 22.
    Dénès, G., Muntasar, A.: Bonding in the doubly disordered Ba1−xSnxCl1 + y F 1−y solid solution. Hyp. Interact. 153, 91–119 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Shannon, R.D., Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Cryst. B 25, 925–946 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Georges Dénès
    • 1
    Email author
  • Abdualhafed Muntasar
    • 1
  • M. Cecilia Madamba
    • 1
  • Hocine Merazig
    • 2
  1. 1.Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, Department of Chemistry and BiochemistryConcordia UniversityMontréalCanada
  2. 2.Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale CHEMSUniversité des Frères Mentouri de ConstantineConstantineAlgeria

Personalised recommendations