Advertisement

Hyperfine Interactions

, 239:39 | Cite as

On/off spin-crossover phenomenon and control of the transition temperature in assembled Iron(II) complexes

  • Satoru NakashimaEmail author
  • Masashi Kaneko
  • Keisuke Yoshinami
  • Saki Iwai
  • Haruka Dote
Article
Part of the following topical collections:
  1. Proceedings of the 4th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2018), Zadar, Croatia, 27-31 May 2018

Abstract

The present study reveals the on/off of spin-crossover (SCO) phenomenon in assembled Fe(II) complexes bridged by bis(pyridyl) type ligand. Whether SCO phenomenon occurs or not in assembled Fe(II) complexes bridged by bis(pyridyl) type ligand is determined by local structure around iron atom. SCO phenomenon occurs when the coordinating pyridines facing to each other across the iron atom are propeller type, while the phenomenon does not occur when they are parallel type or distorted propeller type. DFT calculation explained that, in the shortening of Fe-pyridine bonds when changing from high-spin state to low-spin state, the pyridines of propeller type can approach the iron atom with smaller steric hindrance than those of parallel and distorted propeller type complexes. The local structure is controlled by introducing methyl substituent and introducing π-system, changing SCO phenomenon. And the transition temperature of SCO is also controlled in assembled complexes bridged by 1,2-bis(4-pyridyl)ethane by mixing anionic ligand.

Keywords

Mössbauer spectroscopy Density functional theory Spin-crossover phenomenon Assembled Fe(II) complexes 

References

  1. 1.
    Gütlich, P., Goodwin, H.A. (eds.): Spin crossover in transition metal compounds I. Springer-Verlag, Berlin (2004)Google Scholar
  2. 2.
    Gütlich, P.: In: Gütlich, P., Bill, E., Trautwein A.X. (eds.) Mössbauer spectroscopy and transition metal chemistry, pp 391–476. Springer-Verlag, Berlin (2011)Google Scholar
  3. 3.
    Decurtins, S., Gütlich, P, Köhler, C.P., Spiering, H., Hauser, A.: Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Decurtins, S., Gütlich, P, Haselbach, K.M., Hauser, A., Spiering, H.: Light-induced excited-spin-state trapping in iron(II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study. Inorg Chem. 24, 2174–2178 (1985)CrossRefGoogle Scholar
  5. 5.
    Galyametdinov, Y., Ksenofontov, V., Prosvirin, A., Ovchinnikov, I., Ivanova, G., Gütlich, P., Haase, W.: First example of coexistence of thermmmal spin transition and liquid-crystal properties. Angew. Chem. Int. Ed. 40, 4269–4271 (2001)CrossRefGoogle Scholar
  6. 6.
    Hayami, S., Moriyama, R., Shuto, A., Masuhara, N., Someya, T., Ogawa, Y., Inoue, K., Kato, K., Osaka, K., Takata, M., Kawajiri, R., Mitani, T., Maeda, Y.: Photoinduced spin transition for iron(II) compounds with liquid-crystal properties. Inorg. Chem. 46, 1789–1794 (2007)CrossRefGoogle Scholar
  7. 7.
    Grondin, P., Siretanu, D., Roubeau, O., Achard, M.-F., Clérac, R.: Liquid-crystalline zinc(II) and iron(II) alkyltriazoles one-dimensional coordination polymers. Inorg. Chem. 51, 5417–5426 (2012)CrossRefGoogle Scholar
  8. 8.
    Coronado, E., GalánMascarós, R., MonrabalCapilla, M., GarcíaMartínez, J., PardoIbáñez, P.: Bistable spincrossover nanoparticles showing magnetic thermal hysteresis near room temperature. Adv. Mater. 19, 1359–1361 (2007)CrossRefGoogle Scholar
  9. 9.
    Martínez, V., Boldog, I., Gaspar, A.B., Ksenofontov, V., Bhattacharjee, A., Gütlich, P., Real, J.A.: Spin crossover phenomenon in nanocrystals and nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) two-dimensional coordination polymers. Chem. Mater. 22, 4271–4281 (2010)CrossRefGoogle Scholar
  10. 10.
    Roubeau, O., Colin, A., Schmitt, V., Clérac, R.: Thermoreversible gels as magneto-optical switches. Angew. Chem. Int. Ed. 43, 3283–3286 (2004)CrossRefGoogle Scholar
  11. 11.
    Fujigaya, T., Jiang, D.-L., Aida, T.: Spin-crossover physical gels: A quick thermoreversible response assisted by dynamic self-organization. Chem. Asian J. 2, 106–113 (2007)CrossRefGoogle Scholar
  12. 12.
    Roubeau, O., Agricole, B., Clérac, R, Ravaine, S.: Triazole-based magnetic lamgmuir-blodgett films: Paramagnetic to spin-crossover behavior. J. Phys. Chem. B 108, 15110–15116 (2004)CrossRefGoogle Scholar
  13. 13.
    Roubeau, O., Nativida, E., Agricole, B., Ravaine, S.: Formation, structure, and morphology of triazole-based langmuir-blodgett films. Langmuir 23, 3110–3117 (2007)CrossRefGoogle Scholar
  14. 14.
    Fujigaya, T., Jiang, D.-L., Aida, T.: Spin-crossover dendrimers:? generation number-dependent cooperativity for thermal spin transition. J. Am. Chem. Soc. 127, 5484–5489 (2005)CrossRefGoogle Scholar
  15. 15.
    Sonar, P., Grunert, C.M., Wei, Y.-L., Kusz, J., Gütlich, P., Schlüter, A.D: Iron(II) spin transition complexes with dendritic ligands, Part I. Eur. J. Inorg. Chem., 1613–1622 (2008)Google Scholar
  16. 16.
    Muller, R.N., Elst, L.V., Laurent, S.: Spin transition molecular materials: Intelligent contrast agents for magnetic resonance imaging. J. Am. Chen. Soc. 125, 8405–8407 (2003)CrossRefGoogle Scholar
  17. 17.
    Kahn, O., Kröber, J., Jay, C.: Spin transition molecular materials for displays and data recording. Adv. Mater. 4, 718–728 (1992)CrossRefGoogle Scholar
  18. 18.
    Hayami, S., Shigeyoshi, Y., Akita, M., Inoue, K., Maeda, Y.: Reverse spin transition triggered by a structural phase transition. Angew. Chem. Int. Ed. 44, 4899–4903 (2005)CrossRefGoogle Scholar
  19. 19.
    Ohtani, R., Egawa, S., Nakaya, M., Ohmagari, H., Nakamura, M., Lindoy, L.F., Hayami, S.: Metal dilution e?ects on the reverse spin transition in mixed crystals of type [Co1−xZnx(C16-terpy)2](BF4)2 (x = 0.1−0.7). Inorg. Chem. 55, 3332–3337 (2016)CrossRefGoogle Scholar
  20. 20.
    Kitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A., Enoki, T.: Spin-crossover behaviour of the coordination polymer FeII(C5 H 5N)2NiII(CN)4. J. Mater. Chem. 6, 119–121 (1996)CrossRefGoogle Scholar
  21. 21.
    Niel, V., Martinez-Agudo, J.M., Muñoz, M.C., Gaspar, A.B., Real, J.A.: Cooperative spin crossover behavior in cyanide-bridged Fe(II)−M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). Inorg. Chem. 40, 3838–3839 (2001)CrossRefGoogle Scholar
  22. 22.
    Muñoz, M C, Gaspar, A.B., Galet, A., Real, J.A.: Spin-crossover behavior in cyanide-bridged iron(II)−silver(I) bimetallic 2D Hofmann-like metal−organic frameworks. Inorg. Chem. 46, 8182–8192 (2007)CrossRefGoogle Scholar
  23. 23.
    Agustí, G., Muñoz, M.C., Gaspar, A.B., Real, J.A.: Spin-crossover behavior in cyanide-bridged iron(II)−gold(I) bimetallic 2D Hofmann-like metal−organic frameworks. Inorg. Chem 47, 2552–2561 (2008)CrossRefGoogle Scholar
  24. 24.
    Rodriguez-Velamazan, J.A., Carbonera, C., Castro, M., Palacios, E., Kitazawa, T., Letard, J.-F., Burriel, R.: Two-step thermal spin transition and LIESST relaxation of the polymeric spin-crossover compounds Fe(X-py)2[Ag(CN)2]2 (X = H, 3-Methyl, 4-Methyl, 3,4-Dimethyl, 3-Cl). Chem. Eur. J. 16, 8785–8796 (2010)CrossRefGoogle Scholar
  25. 25.
    Dîrtu, M.M., Naik, A.D., Rotaru, A., Spinu, L., Poelman, D., Garcia, Y.: FeII spin transition materials including an amino–ester 1,2,4-triazole derivative, operating at, below, and above room temperature. Inorg. Chem. 55, 4278–4295 (2016)CrossRefGoogle Scholar
  26. 26.
    Roubeau, O.: Triazole-based one-dimensional spin-crossover coordination polymers. Chem. Eur. J. 18, 15230–15244 (2012)CrossRefGoogle Scholar
  27. 27.
    Quesada, M., Koojiman, H., Gomez, P., Costa, J.S., Koningsbruggen, P.J., Weinberger, P., Reissner, M., Spek, A.L., Haasnoot, J.G., Reedjik, J.: [Fe(μ-btzmp)2(btzmp)2](ClO4)2: a doubly-bridged 1D spin-transition bistetrazole-based polymer showing thermal hysteresis behavior. Dalton Trans, 5434–5440 (2007)Google Scholar
  28. 28.
    Moliner, N., Muñoz, M C, Létard, S, Salmon, L., Tuchgues, J.P., Boussksou, A., Real, J.A.: Mass effect on the equienergetic high-spin/low-spin states of spin-crossover in 4,4‘-Bipyridine-bridged Iron(II) polymeric compounds:? Synthesis, structure, and magnetic, Mössbauer, and theoretical studies. Inorg. Chem. 41, 6997–7005 (2002)CrossRefGoogle Scholar
  29. 29.
    Kojima, N., Aoki, W., Itoi, M., Ono, Y., Seto, M., Kobayashi, Y., Maeda, Y.: Charge transfer phase transition and ferromagnetism in mixed-valence iron complex, [(n-C3 H 7)4N][FeIIFeIII(dto)3] (dto= C 2 O 2 S 2). Solid State Commun. 120, 165–170 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Nakamoto, T., Miyazaki, Y., Itoi, M., Ono, Y., Kojima, N., Sorai, M.: Heat capacity of the mixed-valence complex {[(n-C3 H 7)4N][FeIIFeIII(dto)3]}, phase transition because of electron transfer, and a change in spin-state of the whole system. Angew. Chem. Int. Ed. 40, 4716–4719 (2001)CrossRefGoogle Scholar
  31. 31.
    Real, J.A., Andrés, E., Muñoz, M.C., Julve, M., Granier, T., Bousseksou, A., Varret, F.: Spin crossover in a catenane supramolecular system. Science 268, 265–267 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    Moliner, N., Muñoz, C., Létard, S., Solans, X., Menéndez, N., Goujon, A., Varret, F., Real, J.A.: Spin crossover bistability in three mutually perpendicular interpenetrated (4,4) nets. Inorg. Chem. 39, 5390–5393 (2000)CrossRefGoogle Scholar
  33. 33.
    Neville, S.M., Halder, G.J., Chapman, K.W., Duriska, M.B., Moubaraki, M., Murray, K.S., Kepert, C.J.: Guest tunable structure and spin crossover properties in a nanoporous coordination framework material. J. Am. Soc. Chem. 131, 12106–12108 (2009)CrossRefGoogle Scholar
  34. 34.
    Halder, G.J., Kepert, C.J., Moubaraki, B., Murray, K.S., Cashion, J.D.: Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Morita, T., Asada, Y., Okuda, T., Nakashima, S.: Isomerism of assembled iron complex bridged by 1,2-di(4-pyrisyl)ethane and its solid-to-solid transformation accompanied by a change of electronic state. Bull Chem. Soc. Jpn. 79, 738–744 (2006)CrossRefGoogle Scholar
  36. 36.
    Morita, T., Nakashima, S., Yamada, K., Inoue, K.: Occurrence of the spin-crossover phenomenon of assembled complexes, Fe(NCX)2(bpa)2 (X= S, BH3; bpa= 1,2-bis(4-pyridyl)ethane) by enclathrating organic guest molecule. Chem. Lett. 35, 1042–1043 (2006)CrossRefGoogle Scholar
  37. 37.
    Halder, G.J., Chapman, K.W., Neville, S.M., Moubaraki, B., Murray, K.S., Létard, J., Kepert, C.J.: Elucidating the mechanism of a two-step spin transition in a nanoporous metal−organic framework. J. Am. Chem. Soc. 130, 17552–17562 (2008)CrossRefGoogle Scholar
  38. 38.
    Atsuchi, M., Higashikawa, H., Yoshida, Y., Nakashima, S., Inoue, K.: Novel 2D interpenetrated structure and occurrence of the spin-crossover phenomena of assembled complexes, Fe(NCX)2(bpp)2 (X = S, Se, BH3; bpp = 1,3-Bis(4-pyridyl)propane. Chem. Lett. 36, 1064–1065 (2006)CrossRefGoogle Scholar
  39. 39.
    Atsuchi, M., Inoue, K., Nakashima, S.: Nakashima, S. Reversible structural change of host framework triggered by desorption and adsorption of guest benzene molecules in Fe(NCS)2(bpp)2 ⋅ 2(benzene) (bpp = 1,3-bis(4-pyridyl)propane). Inorg. Chim. Acta. 370, 82–88 (2011)CrossRefGoogle Scholar
  40. 40.
    Nakashima, S.: In: Sharma, V.K., Klingelhofer, G., Nishida, T. (eds.) Mössbauer spectroscopy: Applications in chemistry, biology, and nanotechnology, pp 143–151. Wiley, Hoboken (2013)Google Scholar
  41. 41.
    Paulsen, H., Trautwein, A.X.: Density functional theory calculations for spin crossover complexes. Top. Curr. Chem. 235, 197–219 (2004)CrossRefGoogle Scholar
  42. 42.
    Reiher, M.: Theoretical study of the Fe(phen)2(NCS)2 spin-crossover complex with reparametrized density functionals. Inorg. Chem. 41, 6928–6935 (2002)CrossRefGoogle Scholar
  43. 43.
    Conradie, J., Ghosh, A.: DFT calculations on the spin-crossover complex Fe(salen)(NO):? A quest for the best functional. J. Phys. Chem. B 111, 12621–12624 (2007)CrossRefGoogle Scholar
  44. 44.
    Ye, S., Neese, F.: Accurate modeling of spin-state energetics in spin-crossover systems with modern density functional theory. Inorg. Chem. 49, 772–774 (2010)CrossRefGoogle Scholar
  45. 45.
    Cirera, J., Paesani, F.F.: Theoretical prediction of spin-crossover temperatures in ligand-driven light-induced spin change systems. Inorg. Chem. 51, 8194–8201 (2012)CrossRefGoogle Scholar
  46. 46.
    Cirera, J., Babin, V., Paesani, F.: Theoretical modeling of spin crossover in metal–organic frameworks: [Fe(pz)2Pt(CN)4] as a case study . Inorg. Chem. 53, 11020–11028 (2014)CrossRefGoogle Scholar
  47. 47.
    Neese, N.: ORCA, version 3.0, Max planck institute for chemical energy conversion. Ruhr, Germany (2013)Google Scholar
  48. 48.
    Kaneko, M., Tokinobu, S., Nakashima, N.: Density functional study on spin-crossover phenomena of assembled complexes, [Fe(NCX)2(bpa)2]n (X = S, Se, BH3; bpa = 1,2-bis(4-pyridyl)ethane). Chem. Lett. 42, 1432–1434 (2013)CrossRefGoogle Scholar
  49. 49.
    Kaneko, M.: Nakashima, computational study on thermal spin-crossover behavior for coordination polymers possessing trans-Fe(NCS)2(pyridine)4 unit. Bull. Chen. Soc. Jpn. 88, 1164–1170 (2015)CrossRefGoogle Scholar
  50. 50.
    Wu, X.-R., Shi, H.-Y., Wei, R.-J., Li, J., Zheng, L.-S., Tao, J.: Coligand and solvent effects on the architectures and spin-crossover properties of (4,4)-connected iron(II) coordination polymers. Inorg. Chem. 54, 3773–3780 (2015)CrossRefGoogle Scholar
  51. 51.
    Yoshinami, K., Kaneko, M., Yasuhara, H., Nakashima, S.: Effect of methyl substituent on the spin state of iron(II) assembled complex using 1,4-bis(4-pyridyl)benzene. Radioisotopes 66, 625–632 (2017)CrossRefGoogle Scholar
  52. 52.
    Iwai, S., Yoshinami, K., Nakashima, N.: Structure and spin state of iron(II) assembled complexes using 9,10-Bis(4-pyridyl)anthracene as bridging ligand. Inorganics 5, 61 (2017)CrossRefGoogle Scholar
  53. 53.
    Kahn, O., Martinez, C.J.: Spin-transition polymers: From Molecular materials toward memory devices. Science 297, 44–48 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    Galve, N.C., Coronado, E., Giménez-Marqués, M., Espallargas, G.M. A: Mixed-ligand approach for spin-crossover modulation in a linear FeII coordination polymer. Inorg. Chem. 53, 4482–4490 (2014)CrossRefGoogle Scholar
  55. 55.
    Dote, H., Yasuhara, H., Nakashima, S.: Crystal structure and spin state of mixedcrystals of iron with NCS and NCBH3 for the assembled complexes bridged by 1,3-Bis(4-pyridyl)propanes. J. Radioanal. Nucl. Chem.  https://doi.org/10.1007/s10967-014-3676-y (2014)
  56. 56.
    Dote, H., Kaneko, M., Inoue, K., Nakashima, S.: Synthesis of anion-mixed crystals of the assembled complexes bridged by 1,2-Bis(4-pyridyl)ethane and ligand field of Fe(NCS)(NCBH3) unit. Bull. Chem. Soc. Jpn. 91, 71–81 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Nuclear Science and Engineering CenterJapan Atomic Energy AgencyTokaimuraJapan
  4. 4.Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations