Advertisement

Hyperfine Interactions

, 239:37 | Cite as

Spin crossover in two 1D Fe(II) polymers with 1,2,4-triazole thiourea building blocks

  • Houria Benaissa
  • Aurelian Rotaru
  • Yann GarciaEmail author
Article
  • 57 Downloads
Part of the following topical collections:
  1. Proceedings of the 4th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2018), Zadar, Croatia, 27-31 May 2018

Abstract

The 1D chain [Fe(Etutrz)3](ClO4)2 ⋅ 1.5H2O (2) (Etutrz = 1-ethyl-3-(4H-1,2,4-triazol-4-yl) thiourea), displays pronounced thermochromism with a purple color at 77 K while the sample is white at 300 K. Investigation of magnetic properties reveal an abrupt spin transition around 227 K. Differential scanning calorimetry studies on cooling display a first order phase transition at around 200 K with an entropy variation of ΔS = 61.3 J mol− 1 K− 1. 57Fe Mössbauer spectroscopy of 2 confirms a complete spin transition with a 100% high-spin population at 300 K (isomer shift δHS = 1.04(1) mm/s, quadrupole splitting ΔEQ = 2.86(2) mm/s). The Fe(II) ions convert to the low-spin state at 78K (δLS = 0.53(2) mm/s). The quadrupole splitting, ΔEQ = 0.29(2) mm/s, confirms the presence of distorted octahedra within the 1D chain. The 1D chain [Fe(Etutrz)3](BF4)2 ⋅2MeOH (1) exhibits a different magnetic behavior with a gradual spin conversion at T1/2 = 221 K, whereas thermochromic properties are maintained.

Keywords

57Fe Mossbauer spectroscopy Coordination polymers Spin crossover 1D chains Sensors 

Notes

Acknowledgements

We acknowledge support from the Fonds National de la Recherche Scientifique-FNRS (PDR T.0102.15), WBI-Romanian Academy, WBI (stipendium of excellence for H. B.) CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-2695 (Contract No. 267/01.10.2015) CNFIS-FDI-2018-058 project and COST action CA15128. We thank GFSM for supporting attendance of H.B. to GFSM 2017 (Béni-Mellal) and GFSM 2018 (Bordeaux).

References

  1. 1.
    Gütlich, P., Gaspar, A.B., Garcia, Y.: Spin state switching in iron coordination compounds, Beilstein. J. Org. Chem. 9, 342 (2013)Google Scholar
  2. 2.
    Linares, J., Codjovi, E., Garcia, Y.: Pressure and temperature spin crossover sensors with optical detection. Sensors 12, 4479 (2012)CrossRefGoogle Scholar
  3. 3.
    Garcia, Y., Adarsh, N.N., Naik, A.D.: Crystal engineering of Fe(II) spin crossover coordination polymers derived from triazole or tetrazole ligands. Chimia 67, 411 (2013)CrossRefGoogle Scholar
  4. 4.
    Bielenica, A., Kedzierska, E., Fidecka, S., Maluszynska, H., Miroslaw, B., Koziol, A.E., Stefanska, J., Madeddu, S., Giliberti, G., Sanna, G., Struga, M.: Synthesis, antimicrobial and pharmacological evaluation of thiourea derivatives of 4H-1,2,4-triazole. Lett. Drug. Discov. 12, 263 (2016)CrossRefGoogle Scholar
  5. 5.
    Lagarec, K., Rancourt, DG: Mössbauer spectral analysis software for windows 10. Department of Physics, University of Ottawa, Canada (1998)Google Scholar
  6. 6.
    Dîrtu, M.M., Rotaru, A., Gillard, D., Linares, J., Codjovi, E., Tinant, B., Garcia, Y.: Prediction of the spin transition temperature in FeII 1D coordination polymers: an anion based database. Inorg. Chem. 48, 7838 (2009)CrossRefGoogle Scholar
  7. 7.
    Boukheddaden, K., Ritti, M.H., Bouchez, G., Sy, M., Dîrtu, M.M., Parlier, M., Linares, J., Garcia, Y.: Quantitative contact pressure sensor based on spin crossover mechanism for civil security applications. J. Phys. C 122(7597), 17 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Condensed Matter and NanosciencesUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Electrical Engineering and Computer Science & Research Center MANSiD“Stefan cel Mare” UniversitySuceavaRomania

Personalised recommendations