Advertisement

Hyperfine Interactions

, 239:35 | Cite as

Electric dipole moment of light nuclei

6Li, 7Li, 9Be, 11B, and 13C
  • Nodoka YamanakaEmail author
Article
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018

Abstract

In this proceeding, we present the results of the theoretical evaluations of the electric dipole moment (EDM) of light nuclei, including the preliminary value for the 11B nucleus. From the data, we can infer an approximate counting rule, and predict the EDM of other light nuclei.

Keywords

CP violation Electric dipole moment Light nuclei Cluster model 

Notes

Acknowledgements

The author is supported by the JSPS Postdoctoral Fellowships for Research Abroad.

References

  1. 1.
    Sakharov, A.D.: Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967). [JETP Lett. 5, 24 (1967)]Google Scholar
  2. 2.
    Engel, J., Ramsey-Musolf, M.J., Van Kolck, U.: Electric dipole moments of nucleons, nuclei, and atoms: The standard model and beyond. Prog. Part. Nucl. Phys. 71, 21 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Yamanaka, N.: Analysis of the Electric Dipole Moment in the R-parity Violating Supersymmetric Standard Model. Springer, Berlin (2014).  https://doi.org/10.1007/978-4-431-54544-6 CrossRefGoogle Scholar
  4. 4.
    Yamanaka, N., Sahoo, B., Yoshinaga, N., Sato, T., Asahi, K., Das, B.: Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semileptonic CP violation. Eur. Phys. J. A 53, 54 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Chupp, T.E., Fierlinger, P., Ramsey-Musolf, M.J., Singh, J.T.: Electric dipole moments of the atoms, molecules, nuclei and particles. ArXiv:1710.02504[physics.atom-ph]
  6. 6.
    Khriplovich, I.B.: Feasibility of search for nuclear electric dipole moments at ion storage rings. Phys. Lett. B 444, 98 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Farley, F.J.M., et al.: A New method of measuring electric dipole moments in storage rings. Phys. Rev. Lett. 93, 052001 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Anastassopoulos, V., et al.: A storage ring experiment to detect a proton electric dipole moment. Rev. Sci. Instrum. 87, 115116 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    de Vries, J., Meißner, U.-G.: Violations of discrete space-time symmetries in chiral effective field theory. Int. J. Mod. Phys. E 25, 1641008 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    JEDI Collaboration (G. Guidoboni et al.): How to reach a thousand-second in-plane polarization lifetime with 0.97-GeV/c deuterons in a storage ring. Phys. Rev. Lett. 117, 054801 (2016)Google Scholar
  11. 11.
    Yamanaka, N.: Review of the electric dipole moment of light nuclei. Int. J. Mod. Phys. E 26, 1730002 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Schiff, L.I.: Measurability of nuclear electric dipole moments. Phys. Rev. 132, 2194 (1963)ADSCrossRefGoogle Scholar
  13. 13.
    Yamanaka, N., Hiyama, E.: Standard model contribution to the electric dipole moment of the deuteron,3H, and 3He nuclei. JHEP 02, 067 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Yamanaka, N.: Electric dipole moment of the deuteron in the standard model with NN–ΛN–ΣN coupling. Nucl. Phys. A 963, 33 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Funaki, Y., Horiuchi, H., Tohsaki, A.: Cluster models from RGM to alpha condensation and beyond. Prog. Part. Nucl. Phys. 82, 78 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: An accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Kanada, H., Kaneko, T., Nagata, S., Morikazu, M.: Microscopic study of nucleon-4He scattering and effective nuclear potentials. Prog. Theor. Phys. 61, 1327 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    Hasegawa, A., Nagata, S.: Ground state of 6Li. Prog. Theor. Phys. 45, 1786 (1971)ADSCrossRefGoogle Scholar
  19. 19.
    Schmid, E.W., Wildermuth, K.: Phase shift calculations on α-α scattering. Nucl. Phys. 26, 463 (1961)CrossRefGoogle Scholar
  20. 20.
    Yamada, T., Funaki, Y.: α-cluster structures and monopole excitations in 13C. Phys. Rev. C 92, 034326 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Nishioka, H., Saito, S., Yasuno, M.: Structure study of 2α +t system by the orthogonality condition model. Prog. Theor. Phys. 62, 424 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    Yamada, T., Funaki, Y.: α + α +t cluster structures and Hoyle-analogue states in 11B. Phys. Rev. C 82, 064315 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Saito, S.: Effect of Pauli principle in scattering of two clusters. Prog. Theor. Phys. 40, 893 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    Saito, S.: Interaction between clusters and Pauli principle. Prog. Theor. Phys 41, 705 (1969)ADSCrossRefGoogle Scholar
  25. 25.
    Saito, S.: Chapter II. Theory of resonating group method and generator coordinate method, and orthogonality condition model. Prog. Theor. Phys. Suppl. 62, 11 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    Towner, I.S., Hayes, A.C.: P, T violating nuclear matrix elements in the one meson exchange approximation. Phys. Rev. C 49, 2391 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    de Vries, J., Higa, R., Liu, C.-P., Mereghetti, E., Stetcu, I., Timmermans, R.G.E., van Kolck, U.: Electric dipole moments of light nuclei from chiral effective field theory. Phys. Rev. C 84, 065501 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    de Vries, J., Mereghetti, E., Timmermans, R.G.E., van Kolck, U.: The effective chiral lagrangian from dimension-six parity and time-reversal violation. Ann. Phys. 338, 50 (2013)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Bsaisou, J., de Vries, J., Hanhart, C., Liebig, S., Meißner, U.-G., Minossi, D., Nogga, A., Wirzba, A.: Nuclear electric dipole moments in chiral effective field theory. JHEP 03, 104 (2015). [Erratum ibid. 05, 083 (2015)]CrossRefGoogle Scholar
  30. 30.
    Horiuchi, H.: Chapter III. Kernels of GCM, RGM and OCM and their calculation methods. Prog. Theor. Phys. Suppl. 62, 90 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    Liu, C.-P., Timmermans, R.G.E.: P- and T-odd two-nucleon interaction and the deuteron electric dipole moment. Phys. Rev. C 70, 055501 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Yamanaka, N., Hiyama, E.: Enhancement of the CP-odd effect in the nuclear electric dipole moment of 6Li. Phys. Rev. C 91, 054005 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Yamanaka, N.: Status of the theoretical calculation of nuclear electric dipole moment. ArXiv:1712.06001[nucl-th]
  34. 34.
    Yamanaka, N., Yamada, T., Hiyama, E., Funaki, Y.: Electric dipole moment of 13C. Phys. Rev. C 95, 065503 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Yoshinaga, N., Higashiyama, K., Arai, R.: Shell model estimate of nuclear electric dipole moments. Prog. Theor. Phys. 124, 1115 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Yoshinaga, N., Higashiyama, K., Arai, R., Teruya, E.: Nuclear electric dipole moments for the lowest 1/2 + states in Xe and Ba isotopes. Phys. Rev. C 89, 045501 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.IPNO, CNRS-IN2P3, Université Paris-SudUniversité Paris-SaclayOrsay CedexFrance

Personalised recommendations