Advertisement

Hyperfine Interactions

, 239:34 | Cite as

119Sn Mössbauer spectroscopy in the study of metamagnetic shape memory alloys

  • I. UnzuetaEmail author
  • J. López-García
  • V. Sánchez-Alarcos
  • V. Recarte
  • J. I. Pérez-Landazábal
  • J. A. Rodríguez-Velamazán
  • J. S. Garitaonandia
  • J. A. García
  • F. Plazaola
Article
  • 38 Downloads
Part of the following topical collections:
  1. Proceedings of the 4th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2018), Zadar, Croatia, 27-31 May 2018

Abstract

The effect of combined mechanical and thermal treatments in the magnetostructural properties is studied in a Ni-Mn-Sn metamagnetic shape memory alloy, by X-ray diffraction, powder neutron diffraction, calorimetry, magnetometry and 119Sn Mössbauer spectroscopy. A Ni50Mn35Sn15 alloy has been mechanically milled and then annealed at different temperatures in order to produce different microstructural states. The milling and the post-annealing processes do not produce any variation of transition temperatures and atomic order. However, the induced microstructural distortions affect greatly the martensitic transformation. Milling promotes antiferromagnetic coupling between Mn atoms, resulting in a significant decrease in the saturation magnetization that recovers with annealing. Moreover, the temperature width of the transformation is considerably affected by the mechanically induced local strain. Last but not least, the recovery of the microstructural distortions induced by milling is directly related to the intensity of the non-magnetic component revealed by 119Sn Mössbauer spectroscopy. This result opens the possibility of quantifying the whole contribution of defects and local strain on the martensitic transformation in Ni-Mn-Sn alloys.

Keywords

Heusler alloys Metamagnetic alloys 119Sn-Mössbauer Defects Local strains 

Notes

Acknowledgments

This work has been supported by Spanish Ministry of Economy and Competitiveness under MAT2015-65165-C2-R (MINECO / FEDER) project, and by Basque Government Grant No. IT-1005-16. I. Unzueta also wants to acknowledge financial support from the Basque Government Grant No. PRE2014-1-214. J. López-García acknowledges ILL for his Ph.D. contract. We would like to thank also ILL and SpINS for beam time allocation.

References

  1. 1.
    Ullakko, K., Huang, J.K., Kantner, C., O’Handley, R.C., Kokorin, V.V.: Appl. Phys. Lett. 69(13), 1966 (1996).  https://doi.org/10.1063/1.117637 ADSCrossRefGoogle Scholar
  2. 2.
    Chmielus, M., Zhang, X.X., Witherspoon, C., Dunand, D.C., Müllner, P.: Nat. Mater. 8, 863 EP (2009).  https://doi.org/10.1038/nmat2527 ADSCrossRefGoogle Scholar
  3. 3.
    Yu, S.Y., Liu, Z.H., Liu, G.D., Chen, J.L., Cao, Z.X., Wu, G.H., Zhang, B., Zhang, X.X.: Appl. Phys. Lett. 89(16), 162503 (2006).  https://doi.org/10.1063/1.2362581 ADSCrossRefGoogle Scholar
  4. 4.
    Ito, W., Ito, K., Umetsu, R.Y., Kainuma, R., Koyama, K., Watanabe, K., Fujita, A., Oikawa, K., Ishida, K., Kanomata, T.: Appl. Phys. Lett. 92(2), 021908 (2008).  https://doi.org/10.1063/1.2833699 ADSCrossRefGoogle Scholar
  5. 5.
    Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Nat. Mater. 4, 450 EP (2005).  https://doi.org/10.1038/nmat1395 ADSCrossRefGoogle Scholar
  6. 6.
    Mañosa, L., González-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J.L., Aksoy, S., Acet, M.: Nat. Mater. 9, 478 EP (2010).  https://doi.org/10.1038/nmat2731 ADSCrossRefGoogle Scholar
  7. 7.
    Khan, M., Dubenko, I., Stadler, S., Ali, N.: Appl. Phys. Lett. 91(7), 072510 (2007).  https://doi.org/10.1063/1.2772233 ADSCrossRefGoogle Scholar
  8. 8.
    Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K., Oikawa, K.: Appl. Phys. Lett. 85(19), 4358 (2004).  https://doi.org/10.1063/1.1808879 ADSCrossRefGoogle Scholar
  9. 9.
    Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., Ishida, K.: Nature 439, 957 EP (2006).  https://doi.org/10.1038/nature04493 ADSCrossRefGoogle Scholar
  10. 10.
    Moya, X., Mañosa, L., Planes, A., Aksoy, S., Acet, M., Wassermann, E.F., Krenke, T.: Phys. Rev. B 75, 184412 (2007).  https://doi.org/10.1103/PhysRevB.75.184412 ADSCrossRefGoogle Scholar
  11. 11.
    Şaşıoğlu, E., Sandratskii, L.M., Bruno, P.: Phys. Rev. B 77, 064417 (2008).  https://doi.org/10.1103/PhysRevB.77.064417 ADSCrossRefGoogle Scholar
  12. 12.
    Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Phys. Rev. B 72, 014412 (2005).  https://doi.org/10.1103/PhysRevB.72.014412 ADSCrossRefGoogle Scholar
  13. 13.
    Ma, L., Wang, W.H., Lu, J.B., Li, J.Q., Zhen, C.M., Hou, D.L., Wu, G.H.: Appl. Phys. Lett. 99(18), 182507 (2011).  https://doi.org/10.1063/1.3651767 ADSCrossRefGoogle Scholar
  14. 14.
    Recarte, V., Pérez-Landazábal, J., Sánchez-Alarcos, V., Rodríguez-Velamazán, J.: Acta Mater. 60 (5), 1937 (2012).  https://doi.org/10.1016/j.actamat.2012.01.020. http://www.sciencedirect.com/science/article/pii/S1359645412000584 CrossRefGoogle Scholar
  15. 15.
    Sánchez-Alarcos, V., Pérez-Landazábal, J., Recarte, V., Lucia, I., Vélez, J., Rodríguez-Velamazán, J.: Acta Mater. 61(12), 4676 (2013).  https://doi.org/10.1016/j.actamat.2013.04.040. http://www.sciencedirect.com/science/article/pii/S1359645413003133 CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Kumar, S.V., Singh, R., Raja, M.M., Kumar, A., Bysakh, S., Mahendran, M.: Intermetallics 71, 57 (2016).  https://doi.org/10.1016/j.intermet.2015.12.012. http://www.sciencedirect.com/science/article/pii/S0966979515301126 CrossRefGoogle Scholar
  18. 18.
    Peruman, K.V., Vinodh Kumar, S., Pushpanathan, K., Mahendran, M.: Funct. Mater. Lett. 4(4), 415 (2011).  https://doi.org/10.1142/S1793604711002329 CrossRefGoogle Scholar
  19. 19.
    Prasanna, A.A., Ram, S.: Sci. Technol. Adv. Mater. 14 (1), 015004 (2013).  https://doi.org/10.1088/1468-6996/14/1/015004. PMID: 27877562CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Alves, A.L., Passamani, E.C., Nascimento, V.P., Takeuchi, A.Y., Larica, C.: J. Phys. D: Appl. Phys. 43(34), 345001 (2010). http://stacks.iop.org/0022-3727/43/i=34/a=345001 CrossRefGoogle Scholar
  22. 22.
    Umetsu, R.Y., Kainuma, R., Amako, Y., Taniguchi, Y., Kanomata, T., Fukushima, K., Fujita, A., Oikawa, K., Ishida, K.: Appl. Phys. Lett. 93 (4), 042509 (2008).  https://doi.org/10.1063/1.2960551 ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Sokolovskiy, V.V., Buchelnikov, V.D., Zagrebin, M.A., Entel, P., Sahoo, S., Ogura, M.: Phys. Rev. B 86, 134418 (2012).  https://doi.org/10.1103/PhysRevB.86.134418 ADSCrossRefGoogle Scholar
  25. 25.
    Sánchez-Alarcos, V., Recarte, V., Pérez-Landazábal, J., Gómez-Polo, C., Rodríguez-Velamazán, J.: Acta Mater. 60(2), 459 (2012).  https://doi.org/10.1016/j.actamat.2011.10.026. http://www.sciencedirect.com/science/article/pii/S1359645411007312 CrossRefGoogle Scholar
  26. 26.
    Ikeda, K., Takahashi, S.: Phys. Rev. B 30, 3808 (1984).  https://doi.org/10.1103/PhysRevB.30.3808 ADSCrossRefGoogle Scholar
  27. 27.
    Takahashi, S., Shinohara, T.: J. Phys. F: Met. Phys. 12(12), 3115 (1982). http://stacks.iop.org/0305-4608/12/i=12/a=037 ADSCrossRefGoogle Scholar
  28. 28.
    Unzueta, I., López-García, J., Sánchez-Alarcos, V., Recarte, V., Pérez-Landazábal, J.I., Rodríguez-Velamazán, J.A., Garitaonandia, J.S., García, J.A., Plazaola, F.: Appl. Phys. Lett. 110(18), 181908 (2017).  https://doi.org/10.1063/1.4982630 ADSCrossRefGoogle Scholar
  29. 29.
    Niitsu, K., Minakuchi, K., Xu, X., Nagasako, M., Ohnuma, I., Tanigaki, T., Murakami, Y., Shindo, D., Kainuma, R.: Acta Mater. 122, 166 (2017).  https://doi.org/10.1016/j.actamat.2016.09.035. http://www.sciencedirect.com/science/article/pii/S1359645416307340 CrossRefGoogle Scholar
  30. 30.
    Lázpita, P., Barandiarán, J.M., Gutiérrez, J., Feuchtwanger, J., Chernenko, V.A., Richard, M.L.: J. Phys. 13(3), 033039 (2011). http://stacks.iop.org/1367-2630/13/i=3/a=033039 Google Scholar
  31. 31.
    Young, A.P., Jakubovics, J.P.: J. Phys. F: Met. Phys. 5(10), 1866 (1975). http://stacks.iop.org/0305-4608/5/i=10/a=010 ADSCrossRefGoogle Scholar
  32. 32.
    Kamiyama, T., Shinohara, T., Tomiyoshi, S., Minonishi, Y., Yamamoto, H., Asano, H., Watanabe, N.: J. Appl. Phys. 68(9), 4741 (1990).  https://doi.org/10.1063/1.346128 ADSCrossRefGoogle Scholar
  33. 33.
    Michael Kalvius, P.K.: The Rudolf Mössbauer Story. Springer-Verlag, Berlin (2012)CrossRefGoogle Scholar
  34. 34.
    Kistner, O.C., Sunyar, A.W.: Phys. Rev. Lett. 4, 412 (1960).  https://doi.org/10.1103/PhysRevLett.4.412 ADSCrossRefGoogle Scholar
  35. 35.
    Dominic, F.J.B., Dickson, P.E.: Mössbauer Spectroscopy. Cambridge University Press, Berlin (1986)Google Scholar
  36. 36.
    Schaf, J., Dang, K.L., Veillet, P., Campbell, I.A.: J. Phys. F: Met. Phys. 13(6), 1311 (1983). http://stacks.iop.org/0305-4608/13/i=6/a=028 ADSCrossRefGoogle Scholar
  37. 37.
    Merida, D., García, J.A., Sánchez-Alarcos, V., Pérez-Landazábal, J.I., Recarte, V., Plazaola, F.: Appl. Phys. Lett. 104(23), 231905 (2014).  https://doi.org/10.1063/1.4882903 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • I. Unzueta
    • 1
    • 3
    Email author return OK on get
  • J. López-García
    • 2
  • V. Sánchez-Alarcos
    • 5
    • 6
  • V. Recarte
    • 5
    • 6
  • J. I. Pérez-Landazábal
    • 5
    • 6
  • J. A. Rodríguez-Velamazán
    • 2
  • J. S. Garitaonandia
    • 3
    • 4
  • J. A. García
    • 3
    • 4
  • F. Plazaola
    • 1
  1. 1.Department of Electricity and ElectronicsUniversity of the Basque Country UPV/EHULeioaSpain
  2. 2.Institut Laue-LangevinGrenobleFrance
  3. 3.BCMaterialsUniversity of the Basque Country UPV/EHULeioaSpain
  4. 4.Department of Applied Physicis IIUniversity of the Basque Country UPV/EHULeioaSpain
  5. 5.Department of ScienceUniversidad Pública de NavarraPamplonaSpain
  6. 6.Institute for Advanced Materials (INAMAT)Universidad Pública de NavarraPamplonaSpain

Personalised recommendations