Advertisement

Hyperfine Interactions

, 239:47 | Cite as

350-fold improved measurement of the antiproton magnetic moment using a multi-trap method

  • Christian SmorraEmail author
  • Pascal E. Blessing
  • Matthias J. Borchert
  • Jack A. Devlin
  • James A. Harrington
  • Takashi Higuchi
  • Jonathan Morgner
  • Hiroki Nagahama
  • Stefan Sellner
  • Matthew A. Bohman
  • Andreas H. Mooser
  • Georg L. Schneider
  • Natalie Schön
  • Markus Wiesinger
  • Klaus Blaum
  • Yasuyuki Matsuda
  • Christian Ospelkaus
  • Wolfgang Quint
  • Jochen Walz
  • Yasunori Yamazaki
  • Stefan Ulmer
Open Access
Article
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018

Abstract

We summarize our recent 1.5 parts per billion measurement of the antiproton magnetic moment using the multi Penning-trap system of the BASE collaboration. The result was achieved by combining the detection of individual spin-transitions of a single antiproton with a novel two-particle spectroscopy technique, which dramatically improved the data sampling rate. This measurement contributes to improve the test of the fundamental charge, parity, time reversal (CPT) invariance in the baryon sector by a factor of 350 compared to our last measurement, and by a factor of 3000 compared to the best competing measurement. We review the measurement technique and discuss the improved limits on CPT-violating physics imposed by this measurement.

Keywords

Fundamental symmetries and interactions CPT invariance Standard model Penning trap Antiproton Magnetic moments 

Notes

Acknowledgments

We acknowledge technical support from the Antiproton Decelerator group, CERN’s cryolab team, and all other CERN groups which provide support to Antiproton Decelerator experiments. We acknowledge financial support from the RIKEN Initiative Research Unit Program, RIKEN President Funding, RIKEN Pioneering Project Funding, RIKEN FPR Funding, RIKEN chief scientist program, the RIKEN JRA Program, the Max-Planck Society, the EU (ERC Advanced Grant No. 290870-MEFUCO), and the Helmholtz-Gemeinschaft.

References

  1. 1.
    Hori, M., Walz, J.: Prog. Part. Nucl. Phys. 72, 206–253 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Hori, M., et al.: Science 354, 610–614 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Ahmadi, M., et al.: Nature 529, 373–376 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Ahmadi M. et al: Nature.  https://doi.org/10.1038/s41586-018-0017-2 (2018)
  5. 5.
    Ahmadi, M., et al.: Nature 483, 439–443 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Malbrunot, C., et al.: Phil. Trans. R. Soc. A 376, 20170273 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Kellerbauer, A., et al.: Nucl. Instr. Meth. B 266, 351–356 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Perez, P., et al.: Nucl. Instr. Meth. A 545, 20–30 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Bertsche, W.A., et al.: Phil. Trans. R. Soc. A 376, 20170265 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Mooser, A., et al.: Nature 509, 596–599 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Schneider, G., et al.: Science 358, 1081–1084 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Ulmer, S., et al.: Nature 524, 196–199 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Nagahama, H., et al.: Nat. Commun. 8, 14084 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Smorra, C., et al.: Nature 350, 371–374 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Sellner, S., et al.: New J. Phys. 19, 083023 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Gabrielse, G., et al.: Phys. Rev. Lett. 82, 3198 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    DiSciacca, J., et al.: Phys. Rev. Lett. 110, 130801 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Brown, L.S., Gabrielse, G.: Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    Stadnik, Y.V., et al.: Phys. Rev. D 90, 045035 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Bluhm, R., et al.: Phys. Rev. D 57, 3932–3943 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Ding, Y., Kostelecky, V.A.: Phys. Rev. D 94, 056008 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Smorra, C., et al.: Eur. Phys. J. Special Topics 224, 3055–3108 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Smorra, C., et al.: Phys. Lett. B 769, 1–6 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Nagahama, H., et al.: Rev. Sci. Instr. 87, 113305 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Higuchi, T., et al.: LEAP proceedings, This issue (2018)Google Scholar
  26. 26.
    Dehmelt, H., Ekström, P.: Bull. Am. Phys. Soc. 18, 72 (1973)Google Scholar
  27. 27.
    Ulmer, S., et al.: Phys. Rev. Lett. 106, 253001 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Häffner, H., et al.: Eur. Phys. J. D - At. Mol. Opt. Plas. Phys. 22, 163 (2003)ADSGoogle Scholar
  29. 29.
    Mooser, A., et al.: Phys. Lett. B 723, 78–81 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Mooser, A., et al.: Phys. Rev. Lett 110, 140405 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Smorra, C., et al.: Int. J. Mass Spectr. 389, 10–13 (2015)CrossRefGoogle Scholar
  32. 32.
    Brown, L.S.: Ann. Phys. 159, 62 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    Bennett, G.W., et al.: Phys. Rev. D 73, 072003 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Mittleman, R., et al.: Phys. Rev. Lett. 83, 2116 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    Sturm, S., et al.: Phys. Rev. A 87, 030501 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Heie, F., et al.: Phys. Rev. Lett. 119, 033001 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Bohman, M., et al.: J. Mod. Opt. 65, 568–576 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    Niemann, M., et al.:  https://doi.org/10.1142/9789814566438_0011 (2013)

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Christian Smorra
    • 1
    Email author
  • Pascal E. Blessing
    • 1
    • 2
  • Matthias J. Borchert
    • 1
    • 3
  • Jack A. Devlin
    • 1
  • James A. Harrington
    • 1
    • 4
  • Takashi Higuchi
    • 1
    • 5
  • Jonathan Morgner
    • 1
    • 3
  • Hiroki Nagahama
    • 1
  • Stefan Sellner
    • 1
  • Matthew A. Bohman
    • 1
    • 4
  • Andreas H. Mooser
    • 1
    • 4
  • Georg L. Schneider
    • 1
    • 6
  • Natalie Schön
    • 6
  • Markus Wiesinger
    • 1
    • 4
  • Klaus Blaum
    • 4
  • Yasuyuki Matsuda
    • 5
  • Christian Ospelkaus
    • 3
    • 7
  • Wolfgang Quint
    • 2
  • Jochen Walz
    • 6
    • 8
  • Yasunori Yamazaki
    • 1
  • Stefan Ulmer
    • 1
  1. 1.Ulmer Fundamental Symmetries Laboratory RIKENWakoJapan
  2. 2.GSI-Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  3. 3.Institut für QuantenoptikLeibniz Universität HannoverHannoverGermany
  4. 4.Max-Planck-Institut für KernphysikHeidelbergGermany
  5. 5.Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan
  6. 6.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  7. 7.Physikalisch-Technische BundesanstaltBraunschweigGermany
  8. 8.Helmholtz-Institut MainzMainzGermany

Personalised recommendations