Hyperfine Interactions

, 239:32 | Cite as

119Sn Mössbauer study of Sn-containing radiopharmaceutical kits

  • E. Kuzmann
  • Z. Homonnay
  • Sz. Keresztes
  • M. Antalffy
  • J. Környei
Part of the following topical collections:
  1. Proceedings of the 4th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2018), Zadar, Croatia, 27–31 May 2018


Sn-containing radiopharmaceutical kits, MULTIBONE (composed from stannous chloride dihydrate and EDTMP (ethylene-diamine-tetramethylene phosphonate) and PHYTON (composed from stannous chloride dihydrate and PHYTATE (myo-inositol-hexaphosphate ester) kits, to be used for monitoring in liver tumor therapy, were characterized by 119Sn Mössbauer spectroscopy and XRD measurements. XRD revealed the amorphous nature of the Sn-containing compounds. 80 K 119Sn Mössbauer spectra of both compounds indicated the dominant presence of tin(II) state with characteristic Mössbauer parameters of δ = 3.12 ± 0.01 mms−1 and Δ = 1.84 ± 0.02 mms−1 as well as δ = 3.01 ± 0.01 ± 0.01 mms−1 and Δ = 1.73 ± 0.02 mms−1 for Sn-PHYTATE and Sn-EDTMP, respectively. The occurrence of tin(IV) in Sn-MULTIBONE was as low as measured in the precursor stannous chloride dihydrate (∼3%).


119Sn Mössbauer spectroscopy Pharmaceutical kits Sn-Phytate Sn-Multibone Occurrence of tin(II) Stability 



The financial supports from the NKFIH-OTKA (No K115913 and K115784) and Hungarian-Croatian S&T (No TÉT_16-1-2016-0002) grants are acknowledged.


  1. 1.
    Pierce, A.G. Jr.: Inorg. Chim. Acta 106, L9–L12 (1985)CrossRefGoogle Scholar
  2. 2.
    Fernandes, R.S., Mota, L.G., Kalbasi, A., Moghbel, M., Werner, T.J., Alavi, A., Rubello, D., Cardoso, V.N., de Barros, A.L.: Nucl. Med. Commun. 36(10), 1042–1048 (2015)CrossRefGoogle Scholar
  3. 3.
    Jung, K.P., Park, J.S., Lee, A.Y., Choi, S.J., Lee, S.M., Bae, S.K.: Nucl. Med. Mol. Imaging 46(4), 247–253 (2012)CrossRefGoogle Scholar
  4. 4.
    Mushtaq, A.: Nucl. Med. Biol. 25, 313–315 (1998)CrossRefGoogle Scholar
  5. 5.
    Klencsár, Z., Kuzmann, E., Vértes, A.: J. Radioanal. Nucl. Chem. 210, 105–118 (1996)CrossRefGoogle Scholar
  6. 6.
    Szirtes, L., Megyeri, J., Kuzmann, E., Beck, A.: Radiat. Phys. Chem. 80, 786–791 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Szirtes, L., Megyeri, J., Kuzmann, E.: J. Therm. Anal. Calorim. 107, 1225–1230 (2012)CrossRefGoogle Scholar
  8. 8.
    Bekaert, E., Montagne, L., Delevoye, L., Palavit, G., Wattiaux, A.: J. Non-Cryst. Solids 345&346, 70–74 (2004)CrossRefGoogle Scholar
  9. 9.
    Flinn, P.A.: In: Shenoy, G.K., Wagner, F.E. (eds.) Mössbauer Isomer Shifts, p 593. North Holland, Amsterdam (1978)Google Scholar
  10. 10.
    Stevens, J.G. (ed.): Mössbauer Effect Data Journal. Mössbauer Effect Data Center, Asheville (1975)Google Scholar
  11. 11.
    Demadis, K.D., Stavgianoudaki, N.: Structural diversity in metal phosphonate frameworks: impact on applications. In: Clearfield, A, Demadis, K. (eds.) Metal Phosphonate Chemistry: From Synthesis to Applications, pp. 438–490. Royal Society of Chemistry (2012).
  12. 12.
    Dénes, G., Merazig, H.: Hyperfine Interact 226, 079–087 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Cigala, R.M., Crea, F., De Stefano, C., Lando, G., Milea, D., Sammartano, S.: J. Chem. Thermodyn. 51, 88–96 (2012). köolcsonhatas tin fitatCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Institute of Isotopes Co., Ltd.BudapestHungary

Personalised recommendations