Hyperfine Interactions

, 239:25 | Cite as

In-beam Mössbauer spectra of 57Mn implanted into ice

  • Y. Yamada
  • Y. Sato
  • Y. Kobayashi
  • M. Mihara
  • M. K. Kubo
  • W. Sato
  • J. Miyazaki
  • T. Nagatomo
  • S. Tanigawa
  • D. Natori
  • J. Kobayashi
  • S. Sato
  • A. Kitagawa
Part of the following topical collections:
  1. Proceedings of the 4th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2018), Zadar, Croatia, 27-31 May 2018


In-beam Mössbauer spectra of 57Mn implanted into ice were measured at 13, 77, and 150 K to investigate the interaction of Fe atoms with water molecules having a lattice structure of ice. Three types of 57Fe species, which were high-spin divalent Fe2+ species, were evident in the ice. Although a divalent Fe2+ ion in water is stabilized in the form of hexaquo ferrous ions, Fe(H2O)\(_{\mathrm {6}}^{\mathrm {2+}}\), the 57Fe atom implanted into low-temperature ice had a different chemical form. Density functional theory calculations were performed to make assignments of the species identified from the Mössbauer spectra. The major species was assigned to Fe2+ bonded to four H2O molecules of the ice, Fe(H2O)\(_{\mathrm {4}}^{\mathrm {2+}}\), which is located inside of cubic form ice (ice Ic). Other minor species that appeared at 13 K was assigned to Fe2+ bonded to OH and three H2O molecules, FeOH(H2O)\(_{\mathrm {3}}^{\mathrm {+}}\), trapped in the ice. Another species that appeared at higher temperatures of 77 and 130 K was assigned to Fe(OH)2(H2O)2 trapped in ice Ic.


In-beam Mössbauer spectroscopy Manganese-57 Iron Ice Density functional theory calculation 


  1. 1.
    Yamada, Y., Kobayashi, Y., Kubo, M.K., Mihara, M., Nagatomo, T., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: In-beam Mössbauer spectra of 57Mn implanted into low-temperature solid Ar. Chem. Phys. Lett. 567, 14–17 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Yamada, Y., Kobayashi, Y., Kubo, M.K., Mihara, M., Nagatomo, T., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: In-beam Mössbauer study of 57Mn implanted into a low-temperature xenon. Hyperfine Interact. 226, 35–40 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Dézsi, I., Keszthelyi, L., Pócs, L., Korecz, L.: Mössbauer effect on some iron salts in ice. Phys. Lett. 14, 14–16 (1965)ADSCrossRefGoogle Scholar
  4. 4.
    Mo rup, S., Knudsen, J.E., Nielsen, M.K., Trumpy, G.: Mössbauer spectroscopic studies of frozen aqueous solutions of Fe 3 + salts. J. Chem. Phys. 65, 536–543 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    Nozik, A.J., Kaplan, M.: Mössbauer resonance studies of ferrous ions in ice. J. Chem. Phys. 47, 2960–2977 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    Nozik, A.J., Kaplan, M.: Kinetics of the cubic-to-hexagonal phase transformation in ice doped with Mössbauer ions. Chem. Phys. Lett. 1, 391–395 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    Cameron, J.A., Keszthelyi, L., Nagy, G., Kacsóh, L.: Mössbauer effect on ferrous ions in cubic ice. Chem. Phys. Lett. 8, 628–630 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    Bukshpan, S., Dézsi, I., Pattyn, H., Van rossum, M., Verbiest, E., Langouche, G., Coussement, R.: Mössbauer studies of radioactive atoms implanted in frozen solids. Radiat. Eff. 89, 215–224 (1985)CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Zhou, M., Shao, L., Wang, W., Fan, K., Qin, Q.: Reactions of Fe with H2O and FeO with H2. A combined matrix isolation FTIR and theoretical study. J. Phys. Chem. A 105, 6998–7003 (2001)CrossRefGoogle Scholar
  10. 10.
    Parkinson, G.S., Kim, Y.K., Dohnálek, Z., Smith, R.S., Kay, B.D.: Reactivity of Fe0 atoms and clusters with D2O over FeO(111). J. Phys. Chem. C 113, 4960–4969 (2009)CrossRefGoogle Scholar
  11. 11.
    Mebel, A.M., Hwang, D.-Y.: Theoretical study of the reaction mechanism of Fe atoms with H2O, H2S, O2 and H. J. Phys. Chem. A 105, 7460–7467 (2001)CrossRefGoogle Scholar
  12. 12.
    Ginovska-Pangovska, B., Camaioni, D.M., Dupuis, M.: About the barriers to reaction of CCl4 with HFeOH and FeCl2. J. Phys. Chem. A 115, 8713–8720 (2011)CrossRefGoogle Scholar
  13. 13.
    Hofstetter, T.E., Armentrout, P.B.: Threshold collision-induced dissociation and theoretical studies of hydrated Fe(II): binding energies and Coulombic barrier heights. J. Phys. Chem. A 117, 1110–1123 (2013)CrossRefGoogle Scholar
  14. 14.
    Filip, J., Karlický, F., Marušák, Z., Lazar, P., Černík, M., Otyepka, M., Zboril, R.: Anaerobic reaction of nanoscale zerovalent iron with water: mechanism and kinetics. J. Phys. Chem. C. 118, 13817–13825 (2014)CrossRefGoogle Scholar
  15. 15.
    Nagatomo, T., Kobayashi, Y., Kubo, M.K., Yamada, Y., Mihara, M., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: Remarkable improvement of the signal-to-noise ratio of 57Mn/ 57Fe in-beam Mössbauer spectroscopy. Nucl. Inst. Methods Phys. Res. B 269, 455–459 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Sandala, G.M., Hopmann, K.H., Ghosh, A., Noodleman, L.: Calibration of DFT Functionals for the prediction of 57Fe Mössbauer spectral parameters in iron–nitrosyl and iron–sulfur complexes: accurate geometries prove essential. J. Chem. Theory Comput. 7, 3232–3247 (2011)CrossRefGoogle Scholar
  17. 17.
    Neese, F.: The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2011)CrossRefGoogle Scholar
  18. 18.
    Neese, F.: Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev. 253, 526–563 (2009)CrossRefGoogle Scholar
  19. 19.
    Römelt, M., Ye, S., Neese, F.: Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: meta-GGA and double-hybrid functionals. Inorg. Chem. 48, 784–785 (2009)CrossRefGoogle Scholar
  20. 20.
    Gütlich, P., Bill, E., Trautwein, A.X.: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer, Berlin (2010)Google Scholar
  21. 21.
    Flubacher, P., Flubacher, P., Leadbetter, A.J., Leadbetter, A.J., Morrison, J.A., Morrison, J.A.: Heat capacity of ice at low temperatures. J. Chem. Phys. 33, 1751–1755 (1960)ADSCrossRefGoogle Scholar
  22. 22.
    Snow, K.B., Thomas, T.F.: Mass spectrum, ionization potential, and appearance potentials for fragment ions of sulfuric acid vapor. Int. J. Mass. Spec. Iron Process. 96, 49–68 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    Belloni, J., Khatouri, J., Mostafavi, M., Amblard, J.: Influence of solvation on the ionization potential of metal clusters. Presented at the Ultrafast reaction dynamics and solvent effects. AIP Conference Proceedings February (1994)Google Scholar
  24. 24.
    Miliordos, E., Xantheas, S.S.: Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: insight into the electronic structure of the [Fe(H2O)6]2+-[Fe(H2O)6]3+ complex. J. Chem. Theory Comput. 11, 1549–1563 (2015)CrossRefGoogle Scholar
  25. 25.
    Murray, B.J., Bertram, A.K.: Formation and stability of cubic ice in water droplets. Phys. Chem. Chem. Phys. 8, 186 (2006)CrossRefGoogle Scholar
  26. 26.
    Xu, Y., Yamazaki, M., Villars, P.: Inorganic materials database for exploring the nature of material. Jpn. J. Appl. Phys. 50, 11RH02 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryTokyo University of ScienceTokyoJapan
  2. 2.Graduate School of Engineering ScienceUniversity of Electro-CommunicationsChofuJapan
  3. 3.Nishina Center for Accelerator-Based ScienceRIKENWakoJapan
  4. 4.Graduate School of ScienceOsaka UniversityToyonakaJapan
  5. 5.Division of Arts and SciencesInternational Christian UniversityMitakaJapan
  6. 6.Institute of Science and EngineeringKanazawa UniversityKanazawaJapan
  7. 7.Faculty of Pharmaceutical SciencesHokuriku UniversityKanazawaJapan
  8. 8.National Institute of Radiological SciencesInageJapan

Personalised recommendations