Advertisement

Hyperfine Interactions

, 239:27 | Cite as

Progress towards an improved comparison of the proton-to-antiproton charge-to-mass ratios

  • Takashi Higuchi
  • James A. Harrington
  • Matthias J. Borchert
  • Pascal E. Blessing
  • Jack A. Devlin
  • Jonathan Morgner
  • Stefan Sellner
  • Christian Smorra
  • Matthew A. Bohman
  • Andreas H. Mooser
  • Georg L. Schneider
  • Natalie Schön
  • Markus Wiesinger
  • Klaus Blaum
  • Yasuyuki Matsuda
  • Christian Ospelkaus
  • Wolfgang Quint
  • Jochen Walz
  • Yasunori Yamazaki
  • Stefan Ulmer
Article
  • 101 Downloads
Part of the following topical collections:
  1. Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018

Abstract

High-precision comparisons of the proton-to-antiproton charge-to-mass ratios provide sensitive tests of the fundamental charge, parity, time (CPT) invariance. In 2014, we performed such a measurement with a fractional precision of 69parts in a trillion (p.p.t.). In this article, we describe technical developments which were implemented to improve the precision of our previous measurement by at least a factor of 3.

Keywords

Antiproton Proton CPT symmetry Charge-to-mass ratio Penning trap 

Notes

Acknowledgments

We acknowledge technical support from the Antiproton Decelerator group, CERN’s cryolab team, and all other CERN groups which provide support to Antiproton Decelerator experiments. We acknowledge financial support from the RIKEN Initiative Research Unit Program, RIKEN President Funding, RIKEN Pioneering Project Funding (EEE), RIKEN FPR Funding, RIKEN chief scientist program, the RIKEN JRA Program, the Max-Planck Society, and the Helmholtz-Gemeinschaft.

References

  1. 1.
    Lüders, G., et al.: Ann. Phys. 2, 1 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    Hanneke, D., et al.: Phys. Rev. Lett. 100, 120801 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Van Dyck, R., et al.: Phys. Rev. Lett. 59, 26 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Smorra, C., et al.: Nature 550, 371 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Schneider, G., et al.: Science 358, 1081 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Gabrielse, G., et al.: Phys. Rev. Lett. 82, 3198 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Ulmer, S., et al.: Nature 524, 196 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Kuroda, N., et al.: Nat. Commun. 5, 3089 (2014)CrossRefGoogle Scholar
  9. 9.
    Parthey, C.G., et al.: Phys. Rev. Lett. 107, 203001 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Ahmadi, M., et al.: Nature 541, 506 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Smorra, C., et al.: Eur. Phys. J. S.T. 224, 3055 (2015)CrossRefGoogle Scholar
  12. 12.
    Smorra, C., et al.: Int. J. Mass Spectrom. 389, 10 (2015)CrossRefGoogle Scholar
  13. 13.
    Sellner, S., et al.: New J. Phys. 19, 083023 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Thompson, J.K., et al.: Nature 430, 58 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Heiße, F., et al.: Phys. Rev. Lett. 119, 033001 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Bhatia, A.K., et al.: J. Phys. B. At. Mol. Opt. Phys. 27, 1299 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    Brown, L.S., Gabrielse, G.: Phys. Rev. A 25, 2423 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    Nagahama, H., et al.: Rev. Sci. Inst. 87, 113305 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Wineland, D.J., Dehmelt, H.G.: J. Appl. Phys. 46, 919 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    Cornell, E.A., et al.: Phys. Rev. A 41, 312 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    Gabrielse, G., Tan, J.: J. Appl. Phys. 631, 5143 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    Hughes, R.J., et al.: Phys. Rev. Lett. 66, 854 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Takashi Higuchi
    • 1
    • 2
  • James A. Harrington
    • 1
    • 3
  • Matthias J. Borchert
    • 1
    • 4
  • Pascal E. Blessing
    • 1
    • 5
  • Jack A. Devlin
    • 1
  • Jonathan Morgner
    • 1
    • 4
  • Stefan Sellner
    • 1
  • Christian Smorra
    • 1
  • Matthew A. Bohman
    • 1
    • 3
  • Andreas H. Mooser
    • 1
  • Georg L. Schneider
    • 1
    • 6
  • Natalie Schön
    • 6
  • Markus Wiesinger
    • 1
    • 3
  • Klaus Blaum
    • 3
  • Yasuyuki Matsuda
    • 2
  • Christian Ospelkaus
    • 4
    • 7
  • Wolfgang Quint
    • 5
  • Jochen Walz
    • 6
    • 8
  • Yasunori Yamazaki
    • 1
  • Stefan Ulmer
    • 1
  1. 1.Ulmer Fundamental Symmetries Laboratory RIKENWakoJapan
  2. 2.Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan
  3. 3.Max-Planck-Institut für KernphysikHeidelbergGermany
  4. 4.Institut für QuantenoptikLeibniz Universität HannoverHannoverGermany
  5. 5.GSI-Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  6. 6.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  7. 7.Physikalisch-Technische BundesanstaltBraunschweigGermany
  8. 8.Helmholtz-Institut MainzMainzGermany

Personalised recommendations