Advertisement

Hyperfine Interactions

, 239:20 | Cite as

Benchmark study of DFT with Eu and Np Mössbauer isomer shifts using second-order Douglas-Kroll-Hess Hamiltonian

  • Masashi KanekoEmail author
  • Masayuki Watanabe
  • Sunao Miyashita
  • Satoru Nakashima
Article
  • 87 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017

Abstract

We optimized a mixing ratio of exchange energy between pure DFT and exact Hartree-Fock using TPSS exchange-correlation functional to estimate the accurate coordination bonds in f-block complexes by numerically benchmarking with the experimental data of Mössbauer isomer shifts for 151Eu and 237Np nuclides. Second-order Douglas-Kroll-Hess Hamiltonian with segmented all-electron relativistically contracted basis set was employed to calculate the electron densities at Eu and Np nuclei, i.e. contact densities, for each five complexes for Eu(III) and Np(IV) systems. We compared the root mean square deviation values of their isomer shifts between experiment and calculation by changing the mixing ratio of Hartree-Fock exchange parameter from 0 to 100% at intervals of 10%. As the result, it was indicated that the mixing ratio of 30 and 60% for Eu and Np benchmark systems, respectively, gives the smallest deviation values. Mulliken’s spin population analysis indicated that the covalency in the metal-ligand bonds for both Eu and Np complexes decreases with increasing the Hartree-Fock exchange admixture.

Keywords

Mössbauer isomer shift Density functional theory F-block coordination chemistry Chemical bonding Benchmark study 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP17K14915.

References

  1. 1.
    Nash, K.L.: A review of the basic chemistry and recent developments in trivalent f-elements separations. Solvent Extr. Ion Exch. 11, 729–768 (1993)CrossRefGoogle Scholar
  2. 2.
    Oigawa, H.: Review of ADS and P&T programme in Japan. Proceedings of 13th OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation (IEMPT-13) 37–43 (2015)Google Scholar
  3. 3.
    Kaltsoyannis, N.: Recent developments in computational actinide chemistry. Chem. Soc. Rev. 32, 9–16 (2003)CrossRefGoogle Scholar
  4. 4.
    Schreckenbach, G., Shamov, G.A.: Theoretical actinide molecular science. Acc. Chem. Res. 43, 19–29 (2010)CrossRefGoogle Scholar
  5. 5.
    Platas-Iglesias, C., Roca-Sabio, A., Regueiro-Figueroa, M., Esteban-Gomez, D., de Blas, A., Rodríguez-Blas, T.: Applications of density functional theory (DFT) to investigate the structural, spectroscopic and magnetic properties of lanthanide (III) complexes. Curr. Inorg. Chem. 1, 91–116 (2011)CrossRefGoogle Scholar
  6. 6.
    Wang, D., van Gunsteren, W.F., Chai, Z.: Recent advances in computational actinoid chemistry. Chem. Soc. Rev. 41, 5836–5865 (2012)CrossRefGoogle Scholar
  7. 7.
    Kaneko, M., Miyashita, S., Nakashima, S.: Benchmark study of Mössbauer isomer shifts of Eu and Np complexes by relativistic DFT calculations for understanding the bonding nature of f-block compounds. Dalton Trans. 44, 8080–8088 (2015)CrossRefGoogle Scholar
  8. 8.
    Kaneko, M., Miyashita, S., Nakashima, S.: Computational study on Mössbauer isomer shifts of some organic-neptunium (IV) complexes. Croat. Chem. Acta. 88, 347–353 (2016)CrossRefGoogle Scholar
  9. 9.
    Kaneko, M., Watanabe, M., Miyashita, S., Nakashima, S.: Bonding study on trivalent europium complexes by combining Mössbauer isomer shifts with density functional calculations. Radioisotopes 66, 289–300 (2017)CrossRefGoogle Scholar
  10. 10.
    Gütlich, P., Link, R., Trautwein, A.: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  11. 11.
    Kaneko, M., Miyashita, S., Nakashima, S.: Bonding study on the chemical separation of Am(III) from Eu(III) by S-, N-, and O-donor ligands by means of all-electron ZORA-DFT calculation. Inorg. Chem. 54, 7103–7109 (2015)CrossRefGoogle Scholar
  12. 12.
    Kaneko, M., Watanabe, M., Matsumura, T.: The separation mechanism of Am(III) from Eu(III) by diglycolamide and nitrilotriacetamide extraction reagents using DFT calculations. Dalton Trans. 45, 17530–17537 (2016)CrossRefGoogle Scholar
  13. 13.
    Kaneko, M., Watanabe, M., Miyashita, S., Nakashima, S.: Roles of d- and f-orbital electrons in the complexation of Eu(III) and Am(III) ions with alkyldithiophosphinic acid and alkylphosphinic acid using scalar-relativistic DFT calculations. J. Nucl. Radiochem. Sci. 17, 9–15 (2017)Google Scholar
  14. 14.
    Tao, J., Perdew, J.P., Staroveroc, V.N., Scuseria, G.E.: Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401_1-146401_4 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Neese, F., Petrenko, T.: Quantum Chemistry and Mössbauer Spectroscopy. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Neese, F.: The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012)CrossRefGoogle Scholar
  17. 17.
    Nakajima, T., Hirao, K.: The Douglas-Kroll-Hess approach. Chem. Rev. 112, 385–402 (2012)CrossRefGoogle Scholar
  18. 18.
    Visscher, L., Dyall, K.G.: Dirac-fock atomic electronic structure calculations using different nuclear charge distributions. Atom. Data Nucl. Data Tabl. 67, 207–224 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Pantazis, D.A., Neese, F.: All-electron scalar relativistic basis sets for the lanthanides. J. Chem. Theory Comput. 5, 2229–2238 (2009)CrossRefGoogle Scholar
  20. 20.
    Pantazis, D.A., Neese, F.: All-electron scalar relativistic basis sets for the actinides. J. Chem. Theory Comput. 7, 677–684 (2011)CrossRefGoogle Scholar
  21. 21.
    Pantazis, D.A., Chen, X., Landis, C.R., Neese, F.: All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008)CrossRefGoogle Scholar
  22. 22.
    Neese, F.: An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J. Comput. Chem. 35, 1740–1747 (2003)CrossRefGoogle Scholar
  23. 23.
    Neese, F., Wennmohs, F., Hansen, A., Becker, U.: Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356, 98–109 (2009)CrossRefGoogle Scholar
  24. 24.
    Depaoli, G., Russo, U., Valle, G., Grandjean, F., Williams, A.F., Long, G.J.: 4f orbital covalence in (η 5-C5 H 5)3Eu(THF) as revealed by europium-151 Mössbauer spectroscopy. J. Am. Chem. Soc. 116, 5999–6000 (1994)CrossRefGoogle Scholar
  25. 25.
    Katada, M., Ishiyama, T., Kawata, S., Kondo, M., Kitagawa, S: 151Eu-Mössbauer spectroscopic studies of europium complexes. Conference proceesings Vol. 50 “ICAME-95”, ed. ortalli, I., SIF, Bologna (1996)Google Scholar
  26. 26.
    Burger, K., Nemes-Vetéssy, Z., Vértes, A., Kuzmann, E., Suba, M., Kiss, J.T., Ebel, H., Ebel, M.: Mössbauer study of mixed-ligand complexes of europium(III). Struct. Chem. 1, 251–258 (1990)CrossRefGoogle Scholar
  27. 27.
    Karraker, D.G., Stone, J.A.: Bis(cyclooctatetraenyl)neptunium(III) and –plutonium(III) compounds. J. Am. Chem. Soc 96, 6885–6888 (1974)CrossRefGoogle Scholar
  28. 28.
    Karakker, D.G., Stone, J.A.: Covalency of neptunium(IV) tris(cyclopentadienyl) compounds from Mössbauer spectra. Inorg. Chem. 18, 2205–2207 (1979)CrossRefGoogle Scholar
  29. 29.
    Karakker, D.G., Stone, J.A.: Mössbauer and magnetic suspectibility studies of uranium(III), uranium(IV), neptunium(III), and neptunium(IV) compounds with the cyclopentadiene ion. Inorg. Chem. 11, 1742–1746 (1972)CrossRefGoogle Scholar
  30. 30.
    Deeney, F.A., Delaney, J.A., Ruddy, V.P.: Non-linearity and hysteresis effects in the variation with temperature of the isomer shift in Eu2O3. Phys. Lett. A 27, 571–572 (1968)ADSCrossRefGoogle Scholar
  31. 31.
    Wortmann, G., Blumenröder, S., Freimuth, A., Riegel, D.: 151Eu-Mössbauer study of the high-Tc superconductor EuBa2Cu3O7−x. Phys. Lett. A 126, 434–438 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    Nemykin, V.N., Hadt, R.G.: Influence of Hartree-Fock exchange on the calculated Mössbauer isomer shifts and quadruple splittings in ferrocene derivatives using density functional theory. Inorg. Chem. 45, 8297–8307 (2006)CrossRefGoogle Scholar
  33. 33.
    Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions I. J. Chem. Phys. 23, 1833–1840 (1955)ADSCrossRefGoogle Scholar
  34. 34.
    Gerth, G., Kienle, P., Luchner, K.: Chemical effects on the isomer shift in 151Eu. Phys. Lett. 27A, 557–558 (1968)ADSCrossRefGoogle Scholar
  35. 35.
    Brix, P., Hüfner, S., Kienle, P., Quitmann, D.: Isomer shift on Eu151. Phys. Lett 13, 140–142 (1964)ADSCrossRefGoogle Scholar
  36. 36.
    Greenwood, N.N., Gibb, T.C.: Mössbauer Spectroscopy, pp. 596–604. Chapman and Hall Ltd., London (1971)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nuclear Science and Engineering CenterJapan Atomic Energy AgencyTokaimuraJapan
  2. 2.Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Natural Science Center for Basic Research and DevelopmentHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations