Hyperfine Interactions

, 239:17 | Cite as

Mössbauer spectroscopy control of the preparation of citric- and mandelic acid functionalized nanomagnetites

  • A. Lengyel
  • V. K. Garg
  • A. C. de Oliveira
  • S. W. da Silva
  • L. R. Guilherme
  • Z. Klencsár
  • Z. Homonnay
  • J. A. H. Coaquira
  • Gy. Tolnai
  • E. Kuzmann
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3–8 September 2017


Iron-oxide nanoparticles were prepared by two ways of chemical methods when the coprecipitated nanomagnetites were functionalized by different (citric and mandelic) carboxylic acids. The colloid samples were characterized by 57Fe Mössbauer spectroscopy, electron microscopy, RAMAN spectroscopy and magnetization measurements. Considerable paramagnetic contributions are present in the 80 K Mössbauer spectra in both citric acid coated and mandelic acid coated nanomagnetites. The 5 K measurement revealed that the paramagnetic component appearing at 80 K can represent a superparamagnetic fraction due to the small particle size in the case of mandelic acid functionalized sample. However, in the case of citric acid functionalized nanomagnetite sample, the paramagnetic components occurring also in the 5 K spectra can be associated with components of precursors and of by-product phases.


57Fe Mössbauer spectroscopy Iron-oxide nanoparticles Carboxylic acid coating Superparmagnetism Control of synthesis 



The financial supports from the CAPES (No A127/2013) and NKFIH-OTKA (No K115913 and K115784) as well as Hungarian-Croatian S&T (No TÉT_16-1-2016-0002) grants are acknowledged.


  1. 1.
    Santos, J.G., Silveira, L.B., Fegueredo, P.H.S., Araújo, B.F., Peternele, W.S., Rodriguez, A.F.R., Vilela, E.C., Garg, V.K., Oliveira, A.C., Azevedo, R.B., Morais, P.C.: J. Nanosci. Nanotechnol. 12, 1–5 (2012)CrossRefGoogle Scholar
  2. 2.
    Silva, S.W., Guilherme, L.R., Oliveira, A.C., Garg, V.K., Rodrigues, P.A.M., Coaquira, J.A.H., Silva Ferreira, Q., Melo, G.H.F., Lengyel, A., Szalay, R., Homonnay, Z., Klencsár, Z., Tolnai, Gy., Kuzmann, E.: J. Radioanal. Nucl. Chem. 312, 111–119 (2017)CrossRefGoogle Scholar
  3. 3.
    Khalafalla, E., Reimers, G.: IEEE Trans. Magn. 16, 178 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Klencsár, Z., Kuzmann, E., Vértes, A.: J. Radioanal. Nucl. Chem. 210, 105–118 (1996)CrossRefGoogle Scholar
  5. 5.
    Racuciu, M., Creanga, D.E., Airinei, A., Badescu, V., Apetroaie, N.: Magnetohydrodynamics 43(4), 11–18 (2007)Google Scholar
  6. 6.
    El Mendili, Y., Grasset, F., Randrianantoandro, N., Nerambourg, N., Greneche, J.M., Bardeau, J.F.: J. Phys. Chem. C 119, 10662–10668 (2015)CrossRefGoogle Scholar
  7. 7.
    Dézsi, I., Fetzer, Cs., Gombkötő, Á., Szűcs, I., Gubicza, J., Ungár, T.: J. Appl. Phys. 103, 104312–10315 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Johnson, C.E., Johnson, J.A., Hah, H.Y., Cole, M., Gray, S., Kolesnichenko, V., Kucheryavy, P., Goloverda, G.: Hyperfine Interact. 237, 27 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Stevens, J.G. (ed.): Mössbauer Effect Data Journal. Mössbauer Effect Data Center, Asheville (1975–2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.Department of PhysicsUniversity of BrasíliaBrasíliaBrazil
  3. 3.State University of GoiásAnápolisBrazil
  4. 4.Nuclear Analysis and Radiography Department, Centre for Energy ResearchHASBudapestHungary
  5. 5.Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  6. 6.Wigner Research Centre for PhysicsHASBudapestHungary

Personalised recommendations