Hyperfine Interactions

, 239:14 | Cite as

Mossbauer spectroscopy study of Fe@ZrO2 nanocomposites formation by MA SHS technology

  • Tatiana KiselevaEmail author
  • Alexey Letsko
  • Tatiana Talako
  • Svetlana Kovaleva
  • Tatiana Grigoreva
  • Alla Novakova
  • Nikolay Lyakhov
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017


Particles with core-in-shell structure Fe@ZrO2 were synthesized by step-by-step technology including formation of mechanically pre-activated (MA) precursors with Fe/Zr and Fe2O3/[Fe/Zr] composite structures formation following by Self-Propagated High temperature synthesis (SHS). Mossbauer spectroscopy, Transmission and Scanning electron Microscopy have been performed to study the peculiarities of local structure and its evolution through the sequential synthesis steps via various milling periods and reagent compositions. The exact conditions for iron core in oxide shell Fe@ZrO2 structure formation with promising functionality has been established.


Mossbauer spectroscopy Nanocomposites Core-in-shell Mechanosynthesis Self propagated high temperature synthesis Iron Zirconia 



This work was supported by the Siberian Branch of the Russian Academy of Sciences, the National Academy of Science of Belarus and Moscow University Program of Development.


  1. 1.
    Sharma, S.K. (ed.): Complex Magnetic Nanostructures, vol. 201. Springer, Berlin (2009).
  2. 2.
    Kalele, S., Gosavi, S.W., Urban, J., Kulkarni, S.K.: Nanoshell particles: synthesis, properties and applications. Curr. Sci. 91(8), 1038–1052 (2006)Google Scholar
  3. 3.
    Chaubey, G.S., Kim, J.: Structure and magnetic characterization of core-shell Fe@ZrO2 nanoparticles synthesized by sol-gel process. Bull. Korean Chem. Soc. 28 (12), 2279–2282 (2007). CrossRefGoogle Scholar
  4. 4.
    Kwak, H., Chaudhuri, S.: Role of vacancy and metal doping on combustive oxidation of Zr/ZrO2 core-shell particles. Surf. Sci. 604, 2116–2128 (2010). ADSCrossRefGoogle Scholar
  5. 5.
    Sarkar, A., Biswas, S.K., Pramanik, P.: Design of a new nanostructure comprising mesoporous ZrO2 shell and magnetite core (Fe3O4@mZrO2) and study of its phosphate ion separation efficiency. J. Mater. Chem. 20, 4417–4424 (2010). CrossRefGoogle Scholar
  6. 6.
    Srdić, V.V., Mojić, B., Nikolić, M., Ognjanović, S.: Recent progress on synthesis of ceramics core/shell nanostructures. Process. Appl. Ceram. 7(2), 45–62 (2013). CrossRefGoogle Scholar
  7. 7.
    Shafrir, S.N., Romanofsky, H.J., Skarlinski, M., Wang, M., Miao, Ch., Salzman, S., Chartier, T., Mici, J., Lambropoulos, J.C., Shen, R., Yang, H., Jacobs, S.D.: Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics. Appl. Opt. 48(35), 6797–6810 (2009). ADSCrossRefGoogle Scholar
  8. 8.
    Shen, R., Shafrir, S.N., Miao, Ch., Wang, M., Lambropoulos, J.C., Jacobs, S.D., Yang, H.: Synthesis and corrosion study of zirconia-coated carbonyl iron particles. J. Colloid Interface Sci. 342, 49–56 (2010). ADSCrossRefGoogle Scholar
  9. 9.
    Shi, C.Y., Wang, W.-Q., Fang, J.G., Wu, J.W., Yuan, L.: The study of preparation conditions for magnetic iron zirconium co-oxide microspheres. Mater. Manuf. Process. 27(11), 1149–1153 (2012). CrossRefGoogle Scholar
  10. 10.
    Kiseleva, T., Letsko, A., Talako, T., Kovaleva, S., Grigorieva, T., Novakova, A., Lyakhov, N.: Possibility of the core-in-shell iron particles formation via ma shs technology. In: Proceedings of Fourteenth Bi-National Workshop 2015 “The Optimization of the Composition, Structure and Properties of Metals, Oxides, Composites, Nano and Amorphous Materials, pp. 35–47. Ariel University (2015)Google Scholar
  11. 11.
    Rogachev, A.S., Mukas’yan, A.S.: Burning of heterogeneous nanostructured systems. Fiz. Goreniya Vzryva (in Russian) 46(3), 3–30 (2010)Google Scholar
  12. 12.
    Lyakhov, N.Z., Talako, T.L., Grigor’eva, T.F.: In: Lomovskii, O.I. (ed.) Mechanoactivation Effect in Phase- and Structure Formation Processes under Self-Propagating High-Temperature Synthesis. [in Russian]. Parallel’, Novosibirsk (2008)Google Scholar
  13. 13.
    Grigor’eva, T.F., Letsko, A.I., Talako, T.L, Tsybulya, S.V., Vorsina, I.A., Barinova, A.P., Il’yushchenko, A.F., Lyakhov, N.Z.: The way to produce Cu/ZrO2 composites by combining mechanical activation and self-propagating high-temperature synthesis. Combust. Explos. Shock Waves 47, 174 (2011). CrossRefGoogle Scholar
  14. 14.
    Grigor’eva, T.F., Letsko, A.I., Talako, T.L., Tsybulya, S.V., Vorsina, I.A., Barinova, A.P., Il’yushchenko, A.F., Lyakhov, N.Z.: The way to produce Cu/TiO2 composites by combining mechanical activation and self-propagating high-temperature synthesis. Russ. J. Appl. Chem. 84 (11), 1765–1768 (2011). CrossRefGoogle Scholar
  15. 15.
    Kiseleva, T.Yu., Letsko, A.I, Talako, T.L., Griroryeva, T.F., Novakova, A.A., Lyakhov, N.Z: Mechanochemically synthesized powder precursors local structure influence on the microstructure of SHS @ composites. Nanotechnol. Russ. 10, 220–230 (2015). CrossRefGoogle Scholar
  16. 16.
    Kiseleva, Y., Novakova, A.: Mossbauer spectroscopy in the technology of nanocomposite functional materials. Bull. Russ. Acad. Sci. Phys. 79 (8), 1002–1007 (2015). CrossRefGoogle Scholar
  17. 17.
    Konygin, G.N., Stevulova, N., Dorofeev, G.A., Elsukov, E.P.: Effect of crushing bodies onto results of mechanical alloying of Fe and Si powders mixtures. Khim. Interes. Ustoich. Razvit. 10(1–2), 119–126 (2002)Google Scholar
  18. 18.
    Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012). CrossRefGoogle Scholar
  19. 19.
    Bruggemann, S.A., Artzybashev, Y.A., Orlov, S.V.: (UNIVEM) Version 2.07 (2001–2003)Google Scholar
  20. 20.
    Lyakishev, N.P. (ed.): State Diagrams for Double Metallic Systems. Mashinostroenie, Moscow (1996). [in Russian]Google Scholar
  21. 21.
    Del Bianko, L., Hernando, A., Bonetti, E.: Grainboundary structure and magnetic behavior in nanocrystalline ball-milled iron. Phys. Rev. B 56(14), 8894–8901 (1997). ADSCrossRefGoogle Scholar
  22. 22.
    Gleiter, H.: Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct. Mater. 1, 1–19 (1992). CrossRefGoogle Scholar
  23. 23.
    Novakova, A.A., Agladze, O.V., Kiseleva, T.Yu., Tarasov, B.P., Perov, N.S.: The grain boundary structure influence n the magnetic properties of nanocrystalline iron. Bull. Russ. Acad. Sci. Phys. 65(7), 1016–1021 (2001)Google Scholar
  24. 24.
    Kim, H.S., Estrin, Y., Bush, M.B.: Plastic deformation behaviour of fine-grained materials. Acta Mater. 48(2), 493–504 (2000). CrossRefGoogle Scholar
  25. 25.
    Weiss, B.Z., Bamberger, M., Stupel, M.M.: Phase transformation in the Zr-rich part of the Zr-Fe system resulting from heat treatment and plastic deformation. Metall. Trans. A. 18A, 27–33 (1987). ADSCrossRefGoogle Scholar
  26. 26.
    Filippov, V.P.: Potentialities of Mossbauer spectroscopy for studying zirconium alloys and their oxide films. Met. Sci. Heat Treat. 45(11–12), 452–460 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Filippov, V.P., Bateev, A.B., Lauer, Yu.A., Kargin N.I.: Mossbauer spectroscopy of zirconium alloys. Hyperfine Interact. 217, 45–55 (2013). ADSCrossRefGoogle Scholar
  28. 28.
    Lomovskii, O.I. (ed.): Mechanocomposites Precursors for Creating Materials with New Properties,. Siberian Branch RAS, Novosibirsk (2010) [in Russian]Google Scholar
  29. 29.
    Kiseleva, T.Y., Novakova, A.A., Chistyakova, M.I., Polyakov, A.O., Gendler, T.S., Grigorieva, T.F.: Iron-based amorphous magnetic phase formation in the course of Fe and F2O3 mechanical activation. Diffus. Defect Data Part B: Solid State Phenom. 152, 25–28 (2009). Google Scholar
  30. 30.
    Grigor’eva, T.F., Barinova, A.P., Lyakhov, N.Z.: Mechanochamical Synthesis in Metallic Systems. Parallel’, Novosibirsk (2008) [in Russian]Google Scholar
  31. 31.
    Kiseleva, T.Yu., Novakova, A.A., Grigor’eva, T.F., Barinova, A.P., Vorsina, I.A.: Mechanical synthesis for corundum ceramics/intermetallide nanocomposites. Adv. Mater. (Russ.) 6, 11–20 (2008)Google Scholar
  32. 32.
    Kiseleva, T., Novakova, A., Zimina, M., Polyakov, S., Levin, E., Grigoryeva, T.: Mechanochemically induced formation of amorphous phase at oxide nanocomposite interfaces. J. Phys.: Conf. Ser. 217(1), 012106–012106 (2010).,6/217/1/012106 CrossRefGoogle Scholar
  33. 33.
    Stefanic, G., Music, S., Gajovic, A.: Structural and microstructural changes in monoclinic ZrO2 during ball milling with stainless steel assembly. Mater. Res. Bull. 41, 764–777 (2006). CrossRefGoogle Scholar
  34. 34.
    Jiang, J.Z., Poulsen, F.W., Morup, S.: Structure and thermal stability of nanostructured iron-doped zirconia prepared by high energy ball milling. J. Mater. Res. 14(4), 1343–1452 (1999). ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tatiana Kiseleva
    • 1
    Email author
  • Alexey Letsko
    • 2
  • Tatiana Talako
    • 2
  • Svetlana Kovaleva
    • 3
  • Tatiana Grigoreva
    • 4
  • Alla Novakova
    • 1
  • Nikolay Lyakhov
    • 4
  1. 1.Department of PhysicsMoscow M.V. Lomonosov State UniversityMoscowRussia
  2. 2.Institute of Powder Metallurgy NASMinskBelarus
  3. 3.United Institute of Mechanical EngineeringMinskBelarus
  4. 4.Institute of Solid State Chemistry and Mechanochemistry RASNovosibirskRussia

Personalised recommendations