Advertisement

Hyperfine Interactions

, 239:13 | Cite as

Mössbauer spectroscopic study on the composition of Fe-containing minerals in ordinary chondrites, Miller Range 07710 and Yamato 790272

  • W. Sato
  • M. Nakagawa
  • N. Shirai
  • M. Ebihara
Article
  • 55 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017

Abstract

57Fe Mössbauer spectroscopy was applied to compositional studies of Fe-containing minerals in two different ordinary chondrites, MIL 07710 (L4) and Y-790272 (H4), collected in Antarctica. For both samples, spectral analysis revealed that there are five quadrupole doublets and two magnetic sextets in the room-temperature spectra, suggesting the presence of olivine (M1 and M2), pyroxene (M1 and M2), a high-spin Fe3+ containing phase, antiferromagnetic FeS (troilite), and ferromagnetic Fe-Ni alloy. The large relative area of the oxidized Fe3+ phases and the small intensity of the metal phases signify a possible effect of terrestrial weathering especially for Y-790272 (H4).

Keywords

Chondrite Meteorite Mössbauer spectroscopy MIL 07710 Y-790272 Terrestrial weathering 

Notes

Acknowledgments

The present work was supported in part by JSPS KAKENHI Grant Number 26286075.

References

  1. 1.
    Verma, H.C., Jee, K., Tripathi, R.P.: Systematics of Mössbauer absorption areas in ordinary chondrites and applications to a newly fallen meteorite in Jodhpur, India. Metoritics Planet. Sci. 38, 963 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Menzies, O.N., Bland, P.A., Berry, F.J., Cressey, G.: A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism. Metoritics Planet. Sci. 40, 1023 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution. Metoritics Planet. Sci. 43, 941 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Maksimova, A.A., Oshtrakh, M.I., Klencsár, Z., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Hommonay, Z., Semionkin, V.A.: A comparative study of troilite in bulk ordinary chondrites Farmington L5, Tsarev L5 and Chelyabinsk LL5 using Mössbauer spectroscopy with a high velocity resolution. J. Mol. Struct. 1073, 196 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Maksimova, A.A., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: Mössbauer spectroscopy of H, L and LL ordinary chondrites. Hyperfine Interact. 237, 134 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Antarctic Meteorite Newsletter 33(2), 2010Google Scholar
  7. 7.
    Ebihara, M., Shinotsuka, K., Shingen, T., Togashi, S., Kamioka, H., Kojima, H., Yanai, K.: Antarctic Meteorites XX. Papers presented to the 20th Symposium on Antarctic Meteorites, NIPR, Tokyo, June 6–8, 1995, 54 (1995)Google Scholar
  8. 8.
    Yanai, K., Kojima, H.: Catalog of the antarctic meteorites (1995)Google Scholar
  9. 9.
    Oshtrakh, M.I., Semionkin, V.A.: Mössbauer spectroscopy with a high velocity resolution: Advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta A 100, 78 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Prescher, C., McCammon, C., Dubrovinsky, L.: MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J. Appl. Cryst. 45, 329 (2012)CrossRefGoogle Scholar
  11. 11.
    Maksimova, A.A., Klencsár, Z., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Hommonay, Z., Semionkin, V.A.: Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite. Hyperfine Interact. 237, 33 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Gooding, J.L.: Clay-mineraloid weathering products in Antarctic meteorites. Geochim. Cosomochim. Acta 50, 2215 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    Murad, E.: Mössbauer and X-ray data on β-FeOOH (akaganéite). Clay Miner. 14, 273 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    Li, Y.-L., Zhu, S.-Y., Deng, K.: Mössbauer hyperfine parameters of iron species in the course of Geobacter-mediated magnetite mineralization. Phys. Chem. Minerals 38, 701 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Buchwald, V.F., Clarke, R.S. Jr.: Corrosion of Fe-Ni alloys by Cl-containing akaganéite (β-FeOOH): The Antarctic meteorite case. Am. Mineral. 74, 656 (1989)Google Scholar
  16. 16.
    Shinonaga, T., Endo, K., Ebihara, M., Heumann, K.G., Nakahara, H.: Weathering of Antarctic meteorites investigated from contents of Fe3+, chlorine, and iodine. Geochim. Cosmochim. Acta 58, 3735 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Science and EngineeringKanazawa UniversityKanazawaJapan
  2. 2.Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  3. 3.Graduate School of Science and EngineeringTokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations