Advertisement

Hyperfine Interactions

, 239:11 | Cite as

61Ni synchrotron-radiation-based Mössbauer absorption spectroscopy of Ni nanoparticle composites

  • Ryo MasudaEmail author
  • Hirokazu Kobayashi
  • Yoshimasa Aoyama
  • Makina Saito
  • Shinji Kitao
  • Hiroki Ishibashi
  • Shuichi Hosokawa
  • Takaya Mitsui
  • Yoshitaka Yoda
  • Hiroshi Kitagawa
  • Makoto Seto
Article
  • 100 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3–8 September 2017

Abstract

We obtained energy-domain 61Ni synchrotron-radiation-based Mössbauer absorption spectra of three materials that relate to nanoparticles: Ni2(C8O6H2) metal-organic frameworks (MOFs), Ni nanoparticles synthesized by complete heat decomposition of the MOFs, and the composites of Ni nanoparticles and the MOFs synthesized by partial decomposition of the MOFs. The 61Ni abundance of all the samples was not enriched but we were successfully able to obtain their spectra in 1 day or less, by using a highly efficient measurement system where the internal conversion electrons from energy standard 61Ni86V14 foil were detected. Although both nanoparticle constituent and MOF constituent in the composites included Ni atoms, the Mössbauer parameters of the Ni nanoparticle constituent could be evaluated; the magnetic hyperfine field of the Ni nanoparticle constituent in the composites was different from that of the Ni nanoparticles obtained by the complete heat decomposition. This difference implied that the 3d and/or 4s electron configuration of the nanoparticle constituent were affected by the MOF constituent in the composites.

Keywords

Synchrotron-radiation-based Mössbauer absorption spectroscopy 61Ni Nuclear resonant scattering Nanoparticles Composites of nanoparticles Metal-organic frameworks 

Notes

Acknowledgements

The authors would like to thank the Accelerator Group of SPring-8 for their support, especially with the operation of several electron bunch-modes and the top-up injection operation. These experiments were performed at the BL09XU and BL11XU beamlines of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2017A1862 for BL09XU, and 2015B3512, 2016A3508, 2017A3581 for BL11XU). A part of this work was performed under the Shared Use Program of Japan Atomic Energy Agency (JAEA) facilities (Proposal No. 2015B-E02) supported by JAEA advanced Characterization Nanotechnology Platform as a program of “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Another part of this work was performed under the Shared Use Program of National Institutes for Quantum and Radiological Science and Technology (QST) facilities (Proposal Nos. 2016A-E08 and 2017A-H01) supported by QST advanced Characterization Nanotechnology Platform as a program of “Nanotechnology Platform” of MEXT. A part of this work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (S), Grant No. 24221005. We also thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

  1. 1.
    Falcaro, P., Ricco, R., Yazdi, A., Imaz, I., Furukawa, S., Maspoch, D., Ameloot, R., Evans, J.D., Doonan, C.J.: Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 307, 237–254 (2016), for example. Many examples are reported in this review paperGoogle Scholar
  2. 2.
    Mukoyoshi, M., Kobayashi, H., Kudasa, K., Hayashi, M., Yamda, T., Maesato, M., Taylor, J.M., Kubota, Y., Kato, K., Takata, M., Yamamoto, T., Matsumura, S., Kitagawa, H.: Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chem. Commun. 51, 12463–12466 (2015)CrossRefGoogle Scholar
  3. 3.
    Kobayashi, H., Mitsuka, Y., Kitagawa, H.: Metal nanoparticles covered with a metal-organic framework: from one-pot synthetic method to synergistic energy storage and conversion functions. Inorg. Chem. 55, 7301–7310 (2016)CrossRefGoogle Scholar
  4. 4.
    Obenshain, F.E., Wegener, H.H.F.: Mossbauer effect with Ni61. Phys. Rev. 121, 1344–1349 (1961)ADSCrossRefGoogle Scholar
  5. 5.
    Sergeev, I., Chumakov, A.I., Deschaux Beaume-Dang, T.H., Rüffer, R., Strohm, C., van Brück, U.: Nuclear forward scattering for high energy Mössbauer transitions. Phys. Rev. Lett. 99, 097601 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Seto, M., Masuda, R., Higashitaniguchi, S., Kitao, S., Kobayashi, Y., Inaba, C., Mitsui, T., Yoda, Y.: Synchrotron-radiation-based Mössbauer spectroscopy. Phys. Rev. Lett. 102, 217602 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Kishimoto, S., Nishikido, F., Haruki, R., Shibuya, K., Koshimizu, M.: Fast scintillation detectors for high-energy X-ray region. Hyperfine Interact. 204, 101–110 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Segi, T., Masuda, R., Kobayashi, Y., Tsubota, T., Yoda, Y., Seto, M.: Synchrotron radiation-based 61Ni Mössbauer spectroscopic study of Li(Ni1/3Mn1/3Co1/3) cathode materials of lithium ion rechargeable battery. Hyperfine Interact. 237, 7 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Gee, L.B., Lin, C.-Y., Jenney, F.E. Jr., Adams, M.W.W., Yoda, Y., Masuda, R., Saito, M., Kobayashi, Y., Tamasaku, K., Lerche, M., Seto, M., Riordan, C.G., Ploskonka, A., Power, P.P., Cramer, S.P., Lauterbach, L.: Synchrotron-based nickel Mössbauer spectroscopy. Inorg. Chem. 55, 6866–6872 (2016)Google Scholar
  10. 10.
    Masuda, R., Kobayashi, Y., Kitao, S., Kurokuzu, M., Saito, M., Yoda, Y., Mitsui, T., Hosoi, K., Kobayashi, H., Kitagawa, H., Seto, M.: 61Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure. Sci. Rep. 6, 20861 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    SPring-8 website. http://www.spring8.or.jp/en/users/operation_status/schedule/bunch_mode (2017). Accessed 2 September 2017
  12. 12.
    Gütlich, P., Bill, E., Trautwein, A.X.: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer, Berlin (2011)CrossRefGoogle Scholar
  13. 13.
    Love, J.C., Obenshain, F.E., Czjzek, G.: Mössbauer spectroscopy with 61Ni in nickel-transition-metal alloys and nickel compounds. Phys. Rev. B 3, 2827–2840 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    Masuda, R., Kobayashi, Y., Kitao, S., Kurokuzu, M., Saito, M., Yoda, Y., Mitsui, T., Iga, F., Seto, M.: Synchrotron radiation-based Mössbauer spectra of 174Yb measured with internal conversion electrons. Appl. Phys. Lett. 104, 082411 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Seto, M., Masuda, R., Higashitaniguchi, S., Kitao, S., Kobayashi, Y., Inaba, C., Mitsui, T., Yoda, Y.: Mössbauer spectroscopy in the energy domain using synchrotron radiation. J. Phys. Conf. Ser. 217, 012002 (2010)CrossRefGoogle Scholar
  16. 16.
    Masuda, R., Kobayashi, Y., Kitao, S., Kurokuzu, M., Saito, M., Yoda, Y., Mitsui, T., Seto, M.: Synchrotron radiation based Mössbauer absorption spectroscopy of various nuclides. Hyperfine Interact. 237, 43 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Bhat, M.R.: Nuclear data sheets for A = 61*. Nuclear Date Sheets 88, 417–532 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Wang, C.S., Callaway, J.: Energy bands in ferromagnetic nickel. Phys. Rev. B 15, 298–306 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ryo Masuda
    • 1
    Email author
  • Hirokazu Kobayashi
    • 2
    • 3
  • Yoshimasa Aoyama
    • 2
  • Makina Saito
    • 1
  • Shinji Kitao
    • 1
  • Hiroki Ishibashi
    • 1
  • Shuichi Hosokawa
    • 1
  • Takaya Mitsui
    • 4
  • Yoshitaka Yoda
    • 5
  • Hiroshi Kitagawa
    • 2
  • Makoto Seto
    • 1
    • 4
  1. 1.Research Reactor InstituteKyoto UniversityOsakaJapan
  2. 2.Division of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)SaitamaJapan
  4. 4.Synchrotron Radiation Research Center, Kansai Photon Science Institute, Quantum Beam Science Research DirectorateNational Institutes for Quantum and Radiological Science and TechnologyHyogoJapan
  5. 5.Resarch and Utilization DivisionJapan Synchrotron Radiation Research InstituteHyogoJapan

Personalised recommendations