Hyperfine Interactions

, 239:21 | Cite as

The influence of reactor irradiation on the oxidation state of tin in Zr-0.76Fe-1.6Sn

  • Vladimir P. FilippovEmail author
  • A. B. Bateev
  • Yu. A. Lauer
  • Andrew F. Dykhuis
  • Michael P. Short
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017


The oxidation states of minor alloying elements in Zircaloys often determine their resistance to corrosion, especially in nuclear reactors. In particular, tin is of interest because of its near ubiquitous use in earlier Zircaloys. To study changes in the oxidation state of tin under irradiation, specimens of Zr-0.76Fe-1.6Sn were corroded at similar conditions in an autoclave and in a nuclear reactor. Corrosion rates were found to be significantly accelerated following irradiation compared to those in the autoclave. Mössbauer spectroscopy revealed that in both the autoclave conditions and reactor conditions, a combination of tetravalent, divalent, and elemental (β-Sn) tin particles are formed during the initial corrosion processes. The kinetics of both the change in tin oxidation state and the corrosion rate in-reactor are greatly accelerated, pointing to the effect of irradiation driving tin into solution more quickly.


Zirconium alloys Reactor irradiation Tin oxidation state Mössbauer effect 



The work was financially supported by MEPhI’s Competitiveness Program. A. F. Dykhuis and M. P. Short acknowledge funding from the Consortium for the Advanced Simulation of Light Water Reactors (CASL), a U.S. Department of Energy (DOE) Energy Innovation Hub.


  1. 1.
    Filippov, V.P., Bateev, A.B., Lauer, Yu.A., Kargin, N.I.: Mössbauer spectroscopy of zirconium alloys. Hyperfine Interact. 217, 45–55 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Pecheur, D., Filippov, V.P., Bateev, F.B., Ivanov, Y.Y.: Mössbauer investigations of the chemical state of tin and iron atoms in oxide films of zirconium alloys. In: 13th international symposium on zirconium in the nuclear industry, ASTM STP 1423, pp. 135–153. ASTM STP 1423, Annecy (2001)Google Scholar
  3. 3.
    Polatidis, E. et al.: Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. J. Nucl. Mater. 432, 102–112 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Yilmazbayhan, A., Motta, A.T., Comstock, R.J., Sabol, G.P., Lai, B., Cai, Z.: Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate. J. Nucl. Mater. 324, 6–22 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Anada, H. et al.: Effect of annealing temperature on corrosion behaviour and ZrO2 microstructure of Zry-4 cladding tube. In: Bradley, E.R., Sabol, G.P. (eds.) Zirconium in the nuclear industry: eleventh international symposium, pp. 74–93. ASTM STP 1295, Garmisch-Partenkirchen (1995)Google Scholar
  6. 6.
    Yilmazbayhan, A. et al.: Transmission electron microscopy examination of oxide layers formed on Zr alloys. J. Nucl. Mater. 349, 265–281 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Allen, T.R., Konings, R.J.M., Motta, A.T.: Corrosion of Zirconium Alloys. In: Comprehensive nuclear materials, vol. 5, pp 49–68. Elsevier, Amsterdam (2012)Google Scholar
  8. 8.
    Garner, A., Hu, J., Harte, A., Frankel, P., Grovenor, C., Lozano-Perez, S., Preuss, M.: The effect of Sn concentration on oxide texture and microstructure formation in zirconium alloys. Acta Mater. 99, 259–272 (2015)CrossRefGoogle Scholar
  9. 9.
    Cheng, A., Gilmore, P.M., Klepfer, H.H.: PWR Zircaloy fuel cladding corrosion performance, mechanisms, and modelling. In: Bradley, E.R., Sabol, G.P. (eds.) Zirconium in the nuclear industry: Eleventh international symposium, ASTM STP 1295, pp. 137–158, Garmisch-Partenkirchen (1995)Google Scholar
  10. 10.
    Motta, A.T., Couet, A., Comstock, R.J.: Corrosion of zirconium alloys used for nuclear fuel cladding. Annu. Rev. Mater. Res. 45, 311–343 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Fromhold, A.T.Jr.: Theory of Metal Oxidation, volume 1 of Fundamentals of Defects in Crystalline Solids. North-Holland Publishing Company, Amsterdam (1976)Google Scholar
  12. 12.
    Youssef, M., Yildiz, B.: Intrinsic point-defect equilibria in tetragonal ZrO2: Density functional theory analysis with finite-temperature effects. Phys. Rev. B 86, 144109 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Koski, K., Holsa, J., Juliet, P.: Properties of zirconium oxide thin films deposited by pulsed reactive magnetron sputtering. Surf. Coat. Technol. 120–121, 303–312 (1999)CrossRefGoogle Scholar
  14. 14.
    Beie, H.-J. et al.: Examinations of the Corrosion Mechanism of Zirconium Alloys. In: Zirconium in the nuclear industry: Tenth international symposium, ASTM STP 1245, pp. 615–643, Baltimore (1994)Google Scholar
  15. 15.
    Couet, A., Motta, A.T., Ambard, A.: The coupled current charge compensation model for zirconium alloy fuel cladding oxidation: I. Parabolic oxidation of zirconium alloys. Corr Sci 100, 73–84 (2015)CrossRefGoogle Scholar
  16. 16.
    Seibold, A., Garzarolli, F.: Influence of Composition and Condition on In-PWR Behavior of Zr-Sn-Nb-FeCrV Alloys. In: Moan, G.D., Rudling, P. (eds.) Zirconium in the nuclear industry: Thirteenth international symposium, ASTM STP 1423, pp. 743–757 (2002)Google Scholar
  17. 17.
    Rudling, P., Wikmark, G.J.: A unified model of Zircaloy BWR corrosion and hydriding mechanisms. Nucl. Mater. 265, 44–59 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Cheng, B.-C., Kruger, R.M., Adamson, R.B., Garde, A.M., Bradley, E.R.: Corrosion Behavior of Irradiated Zircaloy. In: Zirconium in the nuclear industry: Tenth international symposium, pp. 400–418. ASTM STP 1245, Baltimore (1993)Google Scholar
  19. 19.
    Gilbon, D., Simonot, C., Garde, A.M., Bradley, E.R.: Effect of Irradiation on the Microstructure of Zircaloy-4. In: Zirconium in the nuclear industry: Tenth international symposium, pp. 521–548. ASTM STP 1245, Baltimore (1994)Google Scholar
  20. 20.
    Youssef, M., Yang, M., Yildiz, B: Doping in the valley of hydrogen solubility: a route to designing Hydrogen-Resistant zirconium alloys. Phys. Rev. Appl. 5, 014008 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Wilhelm, R.V., Howarth, D.: Iron oxide Doped Yttria Stabilized Zirconia Ceramics. Am. Ceram. Soc. Bull. 58, 228–232 (1979)Google Scholar
  22. 22.
    Filippov, V.P.: Changes in the state of tin in the near-surface layers of zirconium alloys at the initial stages of corrosion. Bull. Russ. Acad. Sci. Phys. 79, 1017–1021 (2015)CrossRefGoogle Scholar
  23. 23.
    Sawicki, J.A., Marest, G., Cox, B., Julian, S.R.: Mössbauer spectroscopy of iron implanted and doped in ZrO2. Nucl. Inst. Methods Phys. Res. B 32, 79 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    Shpinel’, V.S.: Rezonans Gamma-Luchei V Kristallakh (Gamma-Rays Resonance in Crystals). Nauka, Moscow (1969)Google Scholar
  25. 25.
    Babikova, Yu.F., Gruzin, P.L., Filippov, V.P., Ivanov, A.V.: Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. 1, 70 (1981)Google Scholar
  26. 26.
    Filippov, V.P., Bateev, A.B., Lauer, Y.A., Kargin, N.I., Petrov, V.I.: Changes in the state of iron atoms in Zr alloys during corrosion tests in an autoclave. Hyperfine Interact. 226(1-3), 771–779 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Shevyakov A.Yu., Novikov V.V., Markelov V.A., Obukhov A.V. , Kobylyansky G.P.: Study of Structure-Phase State of Oxide Films on E110 and E635 Alloys at Pre- and Post-Irradiation Stages. Zirconium in the Nuclear Industry: 18th International Symposium. 598–618 (2017).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations