Hyperfine Interactions

, 239:12 | Cite as

Tuning spin transitions of iron(II)-dpp systems

  • D. Natke
  • D. Unruh
  • B. Dreyer
  • S. Klimke
  • M. Jahns
  • A. Preiss
  • R. Sindelar
  • G. Klingelhöfer
  • F. RenzEmail author
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017


Chemical modifications of the yet reported iron(II) compound [Fe(dpp)2(NCS)2]⋅Py (dpp = dipyrido[3,2a:2’3’c]phenazine, Py = pyridine) which shows abrupt spin crossover below room temperature with large hysteresis have been made. The purpose was to stabilize different spin states at room temperature as well as to adjust the spin crossover in temperature and hysteresis width. We modified the bidentate ligand dpp by substituting hydrogens at the phenazine by different functional groups. In addition, we substituted the thiocyanate monodentate ligands by NCSe. The spin states of these compounds have been investigated by Mössbauer spectroscopy at two temperatures and temperature depending IR spectroscopy. These methods indicating that the chemical modifications are influencing the observed spin configuration of the complexes alongside the spin crossover behavior which changed to gradual and incomplete transitions. These promising results offer interesting possibilities for chemical adjustments of the shown spin crossover systems.


Spin crossover Hysteresis Iron complexes Mössbauer spectroscopy dpp 



The authors would like to thank and acknowledge financial support from Hannover School for Nanotechnology (hsn), Leibniz Universität Hannover (LUH), Laboratory of Nano and Quantum Engineering (LNQE) and Hochschule Hannover (HsH).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

10751_2017_1486_MOESM1_ESM.docx (253 kb)
(DOCX 252 KB)


  1. 1.
    Gütlich, P., Hauser, A., Spiering, H.: Thermisch und Optisch Schaltbare Eisen(II)-Komplexe. Angew. Chem. 106, 2109–2141 (1994)CrossRefGoogle Scholar
  2. 2.
    Gütlich, P., Goodwin, H. A.: Spin Crossover in Transition Metal Compounds I-III. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Renz, F.: Physical and chemical induced spin crossover. J. Phys. Conf. Ser. 217, 012022 (2010)CrossRefGoogle Scholar
  4. 4.
    Unruh, D., Homenya, P., Kumar, M., Sindelar, R., Garcia, Y., Renz, F.: Spin state switching of metal complexes by visible light or hard x-rays. Dalton Trans. 45, 14008–140018 (2016)CrossRefGoogle Scholar
  5. 5.
    Gütlich, P., Gaspar, A. B., Garcia, Y.: Spin state switching in iron coordination compounds. Beilstein J. Org. Chem. 9, 342–391 (2013)CrossRefGoogle Scholar
  6. 6.
    Gamez, P., Sánchez Costa, J., Quesadaa, M., Aromí, G.: Iron spin-crossover compounds: From fundamental studies to practical applications. Dalton Trans. 7845–7853 (2009)Google Scholar
  7. 7.
    Zhong, Z. J., Tao, J. -Q., Yu, Z., Dun, C. -Y., Liu, Y. -J., You, X. -Z.: A stacking spin-crossover iron(II) compound with a large hysteresis. J. Chem. Soc., Dalton Trans. 327–328 (1998)Google Scholar
  8. 8.
    Kusz, J., Zubko, M., Fitch, A., Gütlich, P.: Isostructural phase transition in the spin crossover compound [Fe(dpp)2(NCS)2]py. Z. Kristallogr. 226, 576–584 (2011)CrossRefGoogle Scholar
  9. 9.
    Shepherd, H. J., Palamarciuc, T., Rosa, P., Guionneau, P., Molnar, G., Letard, J. -F., Bousseksou, A.: Antagonism between extreme negative linear compression and spin crossover in [Fe(dpp)2(NCS)2]py. Angew. Chem. Int. Ed. 51, 3910–3914 (2012)CrossRefGoogle Scholar
  10. 10.
    Arancibia, A., Concepción, J., Daire, N., Leiva, G., Leiva, A. M., Loeb, B., Del Rio, R., Diaz, R., Francois, A., Saldivia, M.: Electronic effects of donor and acceptor substituents on dipyrido(3,2-a:2’,3’-c)phenazine (dppz). J. Coord. Chem. 54, 323–336 (2001)CrossRefGoogle Scholar
  11. 11.
    Kleineweischede, A., Mattay, J.: Synthesis of amino- and bis(bromomethyl)-substituted bi- and tetradentate n-heteroaromatic ligands: Building blocks for pyrazino-functionalized fullerene dyads. Eur. J. Org. Chem., 947–957 (2006)Google Scholar
  12. 12.
    Huang, H. L., Li, Z. Z., Liang, Z. H., Liu, Y. J.: Cell cycle arrest, cytotoxicity, apoptosis, DNA-binding, photocleavage, and antioxidant activity of octahedral ruthenium(II) complexes. Eur. J. Inorg. Chem., 5538–5547 (2011)Google Scholar
  13. 13.
    Suffren, Y., Rollet, F. -G., Levasseur-Grenon, O., Reber, C.: Ligand-centered vibrational modes as a probe of molecular and electronic structure: Raman spectroscopy of cis-Fe(1,10-phenanthroline)2(NCS)2 and trans-Fe(pyridine)4(NCS)2 at variable temperature and pressure. Polyhedron 52, 1081–1089 (2013)CrossRefGoogle Scholar
  14. 14.
    Kobetic, R., Gembarovski, D., Baranovic, G., Gabelica, V.: ESI-MS studies of mixed-ligand Fe(II) complexes containing 1,10-phenanthroline and 1,10-phenanthroline-5,6-dione as ligands. J. Mass Spectrom. 43, 753–764 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Krüger, C., Augstin, P., Nemec, I., Travnicek, Z., Oshio, H., Boca, R., Renz, F.: Spin crossover in iron(III) complexes with pentadentate schiff base ligands and pseudohalido coligands. Eur. J. Inorg. Chem., 902–915 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • D. Natke
    • 1
  • D. Unruh
    • 1
  • B. Dreyer
    • 1
    • 2
  • S. Klimke
    • 1
  • M. Jahns
    • 1
  • A. Preiss
    • 1
  • R. Sindelar
    • 2
  • G. Klingelhöfer
    • 3
  • F. Renz
    • 1
    Email author
  1. 1.Institute of Inorganic ChemistryLeibniz Universität HannoverHanoverGermany
  2. 2.Faculty IIUniversity of Applied Science and ArtsHanoverGermany
  3. 3.Institut für Anorganische Chemie und Analytische ChemieJohannes-Gutenberg-Universität MainzMainzGermany

Personalised recommendations