Advertisement

Hyperfine Interactions

, 239:10 | Cite as

On the effect of sulfite ions on the structural composition and ORR activity of Fe-N-C catalysts

  • S. Wagner
  • I. Martinaiou
  • A. Shahraei
  • N. Weidler
  • U. I. KrammEmail author
Article
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017

Abstract

Fe-N-C catalysts are the most promising group of non-precious metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). This study focusses on two different porphyrin-based Fe-N-C catalysts and a Fe-N-C catalyst prepared from alternative precursors under S-addition. Catalysts are subjected to a wet-chemical poisoning treatment by sulfite ions \((\mathrm{SO}_{3}^{2-})\). A mechanism for the deactivation process of the active sites is proposed. ORR activity is evaluated for the original catalysts (OC) and for the poisoned catalysts in 0.1 M H2SO4. In addition, the structural composition of the catalysts is identified by Mößbauer spectroscopy. Our results show that the sulfite ions bound irreversible to the catalysts and the catalysts lose significant fractions of their ORR activity while in Mößbauer spectroscopy a new doublet appears. Based on the results, possible models for the binding of the ambident sulfite ion to the FeN4 centers are discussed.

Keywords

Fe-N-C catalyst Mößbauer spectroscopy PEMFC oxygen reduction reaction 

Notes

Acknowledgments

Financial Support by the German Federal Ministry of Education and Research (BMBF) via the contract 05K16RD1 is gratefully acknowledged. In addition to this, IM, AS and UIK like to acknowledge financial support by the German Research Foundation (GSC1070).

References

  1. 1.
    Jaouen, F., Proietti, E., et al.: Energy Environ. Sci. 4, 114 (2011)CrossRefGoogle Scholar
  2. 2.
    Proietti, E., Jaouen, F., et al.: Nat. Commun. 2, 416 (2011)CrossRefGoogle Scholar
  3. 3.
    Shui, J., Chen, C., et al.: P. Natl. Acad. Sci. USA 112, 10629 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Jaouen, F., Herranz, J., et al.: Appl. Mater. Interfaces 1, 1623 (2009)CrossRefGoogle Scholar
  5. 5.
    Kramm, U.I., Bogdanoff, P., Fiechter, S.: In: Meyers, R.A. (ed.) Encyclopedia of Sustainability Science and Technology. Springer Science + Business Media, LLC: New York, p. 8265 (2013)Google Scholar
  6. 6.
    Koslowski, U.I., Abs-Wurmbach, I., et al.: J. Phys. Chem. C 112, 15356 (2008)CrossRefGoogle Scholar
  7. 7.
    Kramm, U.I., Herrmann-Geppert, I., et al.: J. Am. Chem. Soc. 138, 635–640 (2016)CrossRefGoogle Scholar
  8. 8.
    Kramm, U.I., Herrmann-Geppert, I., et al.: J. Phys. Chem. C 115, 23417 (2011)CrossRefGoogle Scholar
  9. 9.
    Kramm, U.I., Lefère, M., et al.: J. Am. Chem. Soc. 136, 978–985 (2014)CrossRefGoogle Scholar
  10. 10.
    Serov, A., Artyushkova, K., et al.: Nano Energy 16, 293 (2015)CrossRefGoogle Scholar
  11. 11.
    Tian, J., Morozan, A., et al.: Angew. Chem. Int. Ed. 52, 6867 (2013)CrossRefGoogle Scholar
  12. 12.
    Kramm, U.I., Fiechter, S., et al.: J. Electrochem. Soc. 158, B69 (2011)CrossRefGoogle Scholar
  13. 13.
    Zitolo, A., Goellner, V., et al.: Nat. Mater. 14, 937 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Kramm, U.I., Herrmann-Geppert, I., et al.: J. Mater. Chem. A 2, 2663 (2014)CrossRefGoogle Scholar
  15. 15.
    Malko, D., Kucernak, A., Lopes, T.: Nat. Commun. 7, 13285 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Kneebone, J.L., Daifuku, S.L., et al.: J. Phys. Chem. C 121, 16283 (2017)CrossRefGoogle Scholar
  17. 17.
    Trasatti, S., Petrii, O.A.: J. Electroanal. Chem. 327, 353 (1992)CrossRefGoogle Scholar
  18. 18.
    Bae, I.T., Scherson, D.A.: J. Phys. Chem. B 102, 2519 (1998)CrossRefGoogle Scholar
  19. 19.
    Birry, L., Zagal, J.H., Dodelet, J.-P.: Electrochem. Commun. 12, 628 (2010)CrossRefGoogle Scholar
  20. 20.
    Sahraie, N.R., Kramm, U.I., et al.: Nat. Commun. 6, 8618 (2015)CrossRefGoogle Scholar
  21. 21.
    Knauer, M.: Freie Universität, Berlin (2006)Google Scholar
  22. 22.
    Herranz, J., Jaouen, F., et al.: J. Phys. Chem. C Nanomater. Interfaces 115, 16087 (2011)CrossRefGoogle Scholar
  23. 23.
    Taube, R.: Pure Pure Appl. Chem. 38, 427 (1974)CrossRefGoogle Scholar
  24. 24.
    Kramm, U.I.: PhD thesis, Technischen Universität, Berlin (2009)Google Scholar
  25. 25.
    Busch, M., Halck, N.B., et al.: Nano Energy 29, 126 (2016)CrossRefGoogle Scholar
  26. 26.
    Leonard, N.D., Wagner, S., et al.: ACS Catalysis. Accepted,  https://doi.org/10.1021/acscatal.7b02897 (2018)
  27. 27.
    da Silva, L.A, de Andrade, J.B.: J. Braz. Chem. Soc. 15, 170 (2004)CrossRefGoogle Scholar
  28. 28.
    Janßen, A., Martinaiou, I., et al.: Hyperfine Interaction submitted. Accepted,  https://doi.org/10.1007/s10751-017-1481-z (2017)
  29. 29.
    Greenwood, N.N., Gibb, T.C.: Mößbauer Spectroscopy. Chapman and Hall Ltd., London (1971)CrossRefGoogle Scholar
  30. 30.
    Schulenburg, H., Stankov, S., et al.: J. Phys. Chem. B 107, 9034 (2003)CrossRefGoogle Scholar
  31. 31.
    Andres, H., Bominaar, E.L., et al.: J. Am. Chem. Soc. 124, 3012 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • S. Wagner
    • 1
    • 3
  • I. Martinaiou
    • 1
    • 3
  • A. Shahraei
    • 2
    • 3
  • N. Weidler
    • 1
  • U. I. Kramm
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Materials and Earth SciencesTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Graduate School of Excellence, Energy Science and EngineeringTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Department of Materials and Earth SciencesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations