Hyperfine Interactions

, 239:7 | Cite as

Influence of sulfur in the precursor mixture on the structural composition of Fe-N-C catalysts

  • A. Janßen
  • I. Martinaiou
  • S. Wagner
  • N. Weidler
  • A. Shahraei
  • U. I. KrammEmail author
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017


Fe-N-C catalysts were prepared by a new synthesis protocol at 800 C with subsequent acid leaching. The effect of sulfur was investigated by a systematic study in which the molar S/Fe ratio in the precursor was varied from 0.0 to 2.45. The obtained catalysts were evaluated for their ORR activity in 0.1 M H2 SO 4. In addition, the specific BET surface area was determined from N2 sorption measurements and structural characterization was made by Mößbauer spectroscopy. Catalysts contain FeN4 moieties and inorganic iron species. Structure activity correlation indicate a dominance of the ferrous low-spin FeN4 site for the ORR activity. This is in agreement with previous findings. In addition, the optimum in terms of ORR activity is in the same S/Me range as found for porphyrin-based catalysts. However, in contrast to previous conclusions of an avoidance of iron carbide formation by sulfur addition, a very high S/Fe ratio is required to obtain a catalyst free of iron carbide. Further work is required to identify the parameter that indeed enables inhibition of iron carbide formation.


Fe-N-C catalysts Electrocatalysis Mößbauer spectroscopy Oxygen reduction reaction (ORR) 



Financial support by the German Research Foundation (DFG) for the Graduate School of Excellence Energy Science and Engineering (GSC1070), the Federal Ministry of Education and Research (BMBF) via the projects NUKFER (05K16RD1) and StRedO (03XP0092) is gratefully acknowledged.


  1. 1.
    Frank de Bruijn, A., Janssen, G.J.M.: Encycl. Sustain. Sci. Technol. 7694 (2014)Google Scholar
  2. 2.
    Banham, D., Ye, S.: ACS Energy Lett. 2, 629 (2017)CrossRefGoogle Scholar
  3. 3.
    European Commission.: Report on critical raw materials for the EU (2014)Google Scholar
  4. 4.
    Proietti, E., Jaouen, F., et al.: Nat. Commun. 2, 416 (2011)CrossRefGoogle Scholar
  5. 5.
    Wu, G., More, K.L., et al.: Science 332, 443 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Kramm, U.I., Lefèvre, M., et al.: J. Am. Chem. Soc. 136, 978 (2014)CrossRefGoogle Scholar
  7. 7.
    Shui, J., Chen, C., et al.: Proc. Natl. Acad. Sci. USA 112, 10629 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Bae, I.T., Tryk, D.A., Scherson, D.A.: J. Phys. Chem. B 102, 4114 (1998)CrossRefGoogle Scholar
  9. 9.
    Blomquist, J., Lang, H., et al.: J. Chem. Soc., Faraday Trans. 88, 2007 (1992)CrossRefGoogle Scholar
  10. 10.
    Bouwkamp-Wijnoltz, A.L., Visscher, W., et al.: J. Phys. Chem. B 106, 12993 (2002)CrossRefGoogle Scholar
  11. 11.
    Jahnke, H., Schönborn, M., Zimmermann, G: Topics Curr. Chem. 61, 133 (1976)CrossRefGoogle Scholar
  12. 12.
    Scherson, D.A., Tanaka, A.A., et al.: Electrochim. Acta 31, 1247 (1986)CrossRefGoogle Scholar
  13. 13.
    Koslowski, U.I., Abs-Wurmbach, I., et al.: J. Phys. Chem. C 112, 15356 (2008)CrossRefGoogle Scholar
  14. 14.
    Kramm, U.I., Abs-Wurmbach, I., et al.: J. Electrochem. Soc. 158, B69 (2011)CrossRefGoogle Scholar
  15. 15.
    Kramm, U.I., Herrmann-Geppert, I., et al.: J. Phys. Chem. C 115, 23417 (2011)CrossRefGoogle Scholar
  16. 16.
    Ferrandon, M., Kropf, A.J., et al.: J. Phys. Chem. C 116, 16001 (2012)CrossRefGoogle Scholar
  17. 17.
    Sahraie, N.R., Kramm, U.I., et al.: Nat. Commun. 6, 8618 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhang, S., Liu, B., Chen, S: Phys. Chem. Chem. Phys. 15, 18482 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhu, Y., Zhang, B., et al.: Angew. Chem., Int. Ed. 53, 10673 (2014)CrossRefGoogle Scholar
  20. 20.
    Zitolo, A., Goellner, V., et al.: Nat. Mater. 14, 937 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Hu, Y., Jensen, J.O., et al.: Angew. Chem. Int. Ed. 53, 3675 (2014)CrossRefGoogle Scholar
  22. 22.
    Varnell, J.A., Tse, E.C.M., et al.: Nat. Commun. 7, 12582 EP (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Strickland, K., Miner, E., et al.: Nat. Commun. 6, 7343 (2015)CrossRefGoogle Scholar
  24. 24.
    Sougrati, M.T., Goellner, V., et al.: Catal. Today 262, 110 (2016)CrossRefGoogle Scholar
  25. 25.
    Kramm, U.I., Herrmann-Geppert, I., et al.: J. Am. Chem. Soc. 138, 635 (2016)CrossRefGoogle Scholar
  26. 26.
    Bogdanoff, P., Herrmann, I., et al.: J. New Mater. Electrochem. Syst. 7, 85 (2004)Google Scholar
  27. 27.
    Herrmann, I.: Doktorarbeit. Freie Universität, Berlin (2005)Google Scholar
  28. 28.
    Herrmann, I., Kramm, U.I., et al.: J. Electrochem. Soc. 156, B1283 (2009)CrossRefGoogle Scholar
  29. 29.
    Kiciński, W., Dembinska, B., et al.: Carbon 116, 655 (2017)CrossRefGoogle Scholar
  30. 30.
    Kramm, U.I., Herrmann-Geppert, I., et al.: J. Mater. Chem. A 2, 2663 (2014)CrossRefGoogle Scholar
  31. 31.
    Marsh, H., Warburton, A.P.: J. Appl. Chem. 20, 133 (1970)CrossRefGoogle Scholar
  32. 32.
    Grabke, H.J., Moszynski, D., et al.: Surf. Interface Anal. 34, 369 (2002)CrossRefGoogle Scholar
  33. 33.
    Greenwood, N.N., Gibb, T.C.: Mössbauer Spectroscopy, 1st edn. Chapman and Hall Ltd., London (1971)CrossRefGoogle Scholar
  34. 34.
    Pels, J.R., Kapteijn, F., et al.: Carbon 33, 1641 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Graduate School of Excellence Energy Science and EngineeringTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Materials- and Earth SciencesTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Department of ChemistryTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations