Advertisement

Hyperfine Interactions

, 239:3 | Cite as

Structural and Mössbauer studies of nanocrystalline Mn2+-doped Fe3O4 particles

  • K. S. Al-Rashdi
  • H. M. WidatallahEmail author
  • F. Al Ma’Mari
  • O. Cespedes
  • M. Elzain
  • A. Al-Rawas
  • A. Gismelseed
  • A. Yousif
Article
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3-8 September 2017

Abstract

Nanocrystalline Mn2+-doped magnetite (Fe 3O4) particles of the composition Mn x Fe 3−y O4 \(\left (x = 0.0, 0.1, 0.2, 0.3, 0.4 \text { and } 0.5; y = \frac {2x}{3}\right )\), prepared using chemical precipitation under reflux with the Mn2+ ions substituting for Fe3+ ions rather than Fe2+ ones, are characterized mainly with XRD and 57Fe Mössbauer spectroscopy. All samples were found to have spinel-related structures with average lattice parameters that increase linearly with the Mn2+ concentration, x. The particle size for the samples varied from ∼8 nm to 23 nm. The oxidation of Fe2+ to Fe3+ at surface layers of the Fe 3O4 nanoparticles leading to the formation of maghemite (γ-Fe 2O3) was found to considerably weaken with increasing Mn2+ concentration. The percentage of the nanoparticles that exhibit short range magnetic ordering due to cationic clustering and/or superparamagnetism increases from 17% to 32% with increasing x. The dependence of isomer shifts of the 57Fe nuclei at the tetrahedral and octahedral sites on dopant Mn2+ concentration is emphasized. The electric quadrupole shifts indicate that the Mn x Fe 3−y O4 particles undergo Verwey transition. The effective hyperfine magnetic fields at both crystallographic sites decrease with increasing Mn2+ concentration reflecting a size effect as well as a weakening in the magnetic super-exchange interaction. The Mössbauer data indicate that for x ≤ 0.2, the dopant Mn2+ ions substitute solely for octahedral Fe3+ ions whereas for x > 0.2 they substitute for Fe3+ at both tetrahedral and octahedral sites.

Keywords

Magnetite Maghemite Doping Defects Nanocrystalline particles Mössbauer spectroscopy XRD 

Notes

Acknowledgments

This research is supported by Sultan Qaboos University (Research Grant: SQU/Sci/Phys/04/16). KSA acknowledges the support of Sultan Qaboos University in the form of a PhD scholarship.

References

  1. 1.
    Chen, D., Xu, R.: Mater. Res. Bull. 33, 1015 (1998)CrossRefGoogle Scholar
  2. 2.
    Lyubutin, I.S., Lin, C.R., Yu, V.K., Dmitrieva, T.V., Chiang, R.K.: J. Appl. Phys. 106, 034311 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Marand, Z.R., Farimani, M.H.R., Shahtahmasebi, N.: J. Nanomed 1, 238 (2004)Google Scholar
  4. 4.
    Berry, F.J., Greaves, C., Helgason, Ö., MacManus, J.: J. Mater. Chem. 9, 223 (1999)CrossRefGoogle Scholar
  5. 5.
    Velásquez, A.A., Urquijo, J.P.: J. SAR. 1, 11 (2013)CrossRefGoogle Scholar
  6. 6.
    Kwon, W.H., Lee, J.-G., Choi, W.O., Chae, K.P.: J. Magn. 18, 26 (2013)CrossRefGoogle Scholar
  7. 7.
    Kandpal, N.D., Sah, N., Loshali, R., Joshi, R., Parasad, J.: J. Sci. Ind. Res. 73, 87 (2014)Google Scholar
  8. 8.
    Topsøe, H., Dumesic, J.A., Boudart, M.: J. DE. Phys. 12, C6 (1974)Google Scholar
  9. 9.
    Sorescu, M., Mehaila-Tarabasanu, D., Diamandescu, L.: J. Appl. Phys. Lett. 72, 2047 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, C., Yang, S., Chang, H., Peng, Y., Li, J.: J. Mol. Cata. A 376, 13 (2013)CrossRefGoogle Scholar
  11. 11.
    Sorescua, M., Tarabasanu-Mihaila, D., Diamandescu, L.: J. Mater. Lett. 57, 1867 (2003)CrossRefGoogle Scholar
  12. 12.
    Attfield, J.P.: J. Jpn. Soc. Powder Powder Metall. 61, S43 (2014)CrossRefGoogle Scholar
  13. 13.
    Dézsi, I., Fetzer, C.S., Gombkötő, Á., Szűcs, I., Gubicza, J., Ungár, T.: J. Appl. Phys. 103, 104312 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Nikiforov, V.N., Ignatenko, A.N., Irkhin, V.Y.: J. Exp. Theor. Phys. 124, 304 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Lodhia, J., Mandarano, G., Ferris, N.J., Eu, P., Cowell, S.F.: Biomed. Imaging Interv. J. 6, e12 (2010)CrossRefGoogle Scholar
  16. 16.
    Gorski, C.A., Scherer, M.M.: Am. Mineral. 95, 1017 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Deepak, F.L., Bañobre-López, M., Carbó-Argibay, E., Cerqueira, M.F., Piñeiro-Redondo, Y., Rivas, J., Thompson, C.M., Kamali, S., Rodríguez-Abreu, C., Kovnir, K., Kolen’ko, Y.V.: J. Phys. Chem. C 119, 119477 (2015)CrossRefGoogle Scholar
  18. 18.
    Varsheny, D., Yogi, A.: Mater. Chem. Phys. 128, 489 (2011)CrossRefGoogle Scholar
  19. 19.
    Taufiq, A., Sunaryono, Putra, E.G.R., Okazawa, A., Watnabe, I., Kojima, N., Pratapa, S., Darminto: J. Supercond. Nov. Magn. 28, 2855 (2015)CrossRefGoogle Scholar
  20. 20.
    Choi, Y. S., Yoon, H.Y., Lee, J. S., Wu, J. H., Kim, Y. K.: J. Appl. Phys. 115, 17B517 (2014)CrossRefGoogle Scholar
  21. 21.
    Lagarec, K., Rancourt, D., Denis, G.: Recoil-mössbauer spectral analysis software for windows. University of Ottawa, Ottawa (1998)Google Scholar
  22. 22.
    Chaki, S.H., Malek, T.J., Chaudhary, M.D., Tailor, J.P., Deshpande, M.P.: Adv. Nat. Sci.: Nanosci. Nanotechnol. 6, 035009 (2015)ADSGoogle Scholar
  23. 23.
    Petkov, V., Cozzoli, P.D., Buonsanti, R., Cingolani, R., Ren, Y.: J. Am. Chem. Soc. 131, 14264 (2009)CrossRefGoogle Scholar
  24. 24.
    Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., Kwon, H., Song, K., Shon, I.-J.: Talanta 94, 348–352 (2012)CrossRefGoogle Scholar
  25. 25.
    Denton, A.R., Ashcroft, N.W.: Phys. Rev. A 43, 3161 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    Winter, M.: http://www.webelements.com, Ⓒ1993-2017, The University of Sheffield and WebElements Ltd. UK
  27. 27.
    Daou, T.J., Pourroy, G., Be’gin-Colin, S., Grene‘che, J.M., Ulhaq-Bouillet, C., Legare’, P., Bernhardt, P., Leuvrey, C., Rogez, G.: Chem. Mater. 18, 4399–4404 (2006)CrossRefGoogle Scholar
  28. 28.
    Johnson, C.E., Johnson, J.A., Hah, H.Y., Cole, M., Gray, S., Kolesnichenko, V., Kucheryavy, P., Goloverda, G.: Hyperfine Interact. 237, 27 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Neese, F.: Inorg. Chim. Acta 337, 181–192 (2002)CrossRefGoogle Scholar
  30. 30.
    Galperin, F.M.: Electron configuration and magnetic moment of 3d transition metal atoms. Phys. Stat. Sol. (b) 70, K133—K137 (1975)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • K. S. Al-Rashdi
    • 1
  • H. M. Widatallah
    • 1
    Email author
  • F. Al Ma’Mari
    • 1
  • O. Cespedes
    • 2
  • M. Elzain
    • 1
  • A. Al-Rawas
    • 1
  • A. Gismelseed
    • 1
  • A. Yousif
    • 1
  1. 1.Physics Department, College of ScienceSultan Qaboos UniversityMuscatOman
  2. 2.School of Physics and AstronomyUniversity of LeedsLeedsUK

Personalised recommendations