Hyperfine Interactions

, 238:59 | Cite as

Synthesis and characterization of αFe2−x M x O3 (M = Co, Ni, Cu or Zn) photocatalysts for the degradation of the indigo carmine dye in water

  • Edilailsa Januário de Melo
  • João Paulo de Mesquita
  • Márcio César Pereira
  • Luis Carlos Duarte Cavalcante
  • Edivaldo dos Santos Filho
  • José Domingos FabrisEmail author
  • José Domingos Ardisson
  • Luiz Carlos Alves de Oliveira
Part of the following topical collections:
  1. Proceedings of the 15th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2016), 13-18 November 2016, Panama City, Panama


If suitably prepared, hematite (αFe2O3)-based materials may be effective photocatalysts under visible light. Doping hematite with cations is assumed to improve the chemical photocatalyst performance of hematite. To check for these effects, the catalytic efficiency under visible radiation of the pure, Co-, Ni-, Cu-, or Zn-doped nanosized hematite samples was tested on the degradation of the indigo carmine dye, as a model molecule to simulate a generic organic substrate. These semiconductors with photocatalyst activity were first characterized by powder X-ray diffractometry, Mössbauer spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectrometer, diffuse reflectance spectroscopy and by energy dispersive X-ray fluorescence. The most efficient photocalysts for the indigo carmine dye degradation were the Cu- and Zn-doped hematite samples. The relatively higher photocatalytic activity of these two samples are interpreted as being due to their relatively higher ability, among the tested semiconductors, to absorb the visible light, efficient charge separation and e-transference.


Photocatalyst Hematite Indigo carmine dye 



Work supported by FAPEMIG and CNPq (Brazil; including grant # 305755-2013-7). EJM thanks CAPES (Brazil) for sponsoring her MSc studentship at UFVJM. The authors are indebted to Mr Abraão José Silva Viana and Mr José Joaquim de Sá Teles (UFVJM) for their technical assistance on the EDXRF analysis and collection of the powder X-ray diffraction data and to Mr João Batista Santos Barbosa and Mr Tércio Assunção Pedrosa (CDTN) for their technical assistance on obtaining the powder DRX and SEM-EDS data, respectively. JDF is particularly indebted to CAPES (Brazil) for granting his Visiting Professorship at UFVJM under the PVNS program.


  1. 1.
    Cao, Z., Qin, M., Gu, Y., Jia, B., Chen, P., Qu, X.: Synthesis and characterization of Sn-doped hematite as visible light photocatalyst. Mater. Research Bull. 77, 41–47 (2016). doi: 10.1016/j.materresbull.2016.01.004 CrossRefGoogle Scholar
  2. 2.
    Wu, Q., Zhao, J., Liu, K., Wang, H., Sun, Z., Li, P., Xue, S.: Ultrathin hematite film for photoelectrochemical water splitting enhanced with reducing graphene oxide. Int. J. Hydrogen Energy 40, 6763–6770 (2015). doi: 10.1016/j.ijhydene.2015.03.160 CrossRefGoogle Scholar
  3. 3.
    Yang, X., Ma, F., Li, K., Guo, Y., Hu, J., Li, W., Huo, M., Guo, Y.: Mixed phase titania nanocomposite co-doped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation. J. Hazard. Mater. 175, 429–438 (2010). doi: 10.1016/j.jhazmat.2009.10.024 ADSCrossRefGoogle Scholar
  4. 4.
    Tamirat, A.G., Su, W.-N., Dubale, A.A., Pan, C.-J., Chen, H.-M., Ayele, D.W., Lee, J.-F., Hwang, B.-J.: Efficient photoelectrochemical water splitting using three dimensional urchin-like hematite nanostructure modified with reduced graphene oxide. J. Power Sources. 287, 119–128 (2015). doi: 10.1016/j.jpowsour.2015.04.042 ADSCrossRefGoogle Scholar
  5. 5.
    Lee, C.-Y., Wang, L., Kado, Y., Kirchgeorg, R., Schmuki, P.: Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. Electrochem. Communi. 44, 308–311 (2013). doi: 10.1016/j.elecom.2013.07.024 CrossRefGoogle Scholar
  6. 6.
    Pawar, R.C., Pyo, Y., Ahn, S.H., Lee, C.S.: Photoelectrochemical properties and photodegradation of organic pollutants using hematite hybrids modified by gold nanoparticles and graphitic carbon nitride. Appl. Catal. B Environ. 176-177, 654–666 (2015). doi: 10.1016/j.apcatb.2015.04.045 CrossRefGoogle Scholar
  7. 7.
    Cornell, R.M., Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 3-527-30274-3 (2003)Google Scholar
  8. 8.
    Scherrer, P., Nachrichten, G. (1918). Apud: Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). doi: 10.1103/PhysRev.56.978
  9. 9.
    JCPDS–Joint Committee on Powder Diffraction Standards. Mineral Powder Diffraction Files Data Book, Swarthmore, Pennsylvania (1980)Google Scholar
  10. 10.
    Ramasami, A.K., Ravishankar, T.N., Sureshkumar, K., Reddy, M.V., Chowdari, B.V.R., Ramakrishnappa, T., Balakrishna, G.R.: Synthesis, exploration of energy storage and electrochemical sensing properties of hematite nanoparticles. J. Alloys and Compounds. 671, 552–559 (2016). doi: 10.1016/j.jallcom.2016.02.050 CrossRefGoogle Scholar
  11. 11.
    Phuan, Y.W., Chong, M.N., Egamparan, K., Lee, B.-K., Zhu, T., Chan, E.S.: Understanding the synergistic between optimum dopant loading and charge transfer kinetics in platinum-mediated nanostructured hematite thin films. J. Taiwan Institute Chem. Eng. In Press. doi: 10.1016/j.jtice.2016.06.031 (2016)
  12. 12.
    Bomfim, H.E.L., Oliveira, A.C., Rangel, M.C.: Effect of zinc on the catalytic activity oh hematite in ethylbenzene dehydrogenation. React. Kinet. Catal. Lett. 80, 359–364 (2003). doi: 10.1023/B:REAC.0000006146.85916.9d CrossRefGoogle Scholar
  13. 13.
    Rocha, V.M.S., Pereira, M.G., Teles, L.R., Souza, M.O.G.: Effect of copper on the photocatalytic activity of semiconductor-based titanium dioxide (anatase) and hematite (α-Fe2O3). Mater. Sci. Eng. B 185, 13–20 (2014). doi: 10.1016/j.mseb.2014.02.004 CrossRefGoogle Scholar
  14. 14.
    Saremi-Yarahmadi, S., Wijayantha, K.G.U., Tahir, A.A., Vaidhyanathan, B.: Nanostructured α-Fe2O3 electrodes for solar driven water splitting: Effect of doping agents on preparation and performance. J. Phys. Chem. C 113, 4768–4778 (2009). doi: 10.1021/jp808453z CrossRefGoogle Scholar
  15. 15.
    Bagwasi, S., Tian, B., Zhang, J., Nasir, M.: Synthesis, characterization and application of bismuth and boron Co-doped TiO2: A visible light active photocatalyst. Chem. Eng. J. 217, 108–118 (2013). doi: 10.1016/j.cej.2012.11.080 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edilailsa Januário de Melo
    • 1
  • João Paulo de Mesquita
    • 1
  • Márcio César Pereira
    • 2
  • Luis Carlos Duarte Cavalcante
    • 3
    • 4
  • Edivaldo dos Santos Filho
    • 1
  • José Domingos Fabris
    • 1
    • 4
    Email author
  • José Domingos Ardisson
    • 5
  • Luiz Carlos Alves de Oliveira
    • 4
  1. 1.Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM)DiamantinaBrazil
  2. 2.Institute of Science, Engineering, and TechnologyFederal University of the Jequitinhonha and Mucuri Valleys (UFVJM)Teófilo OtoniBrazil
  3. 3.Center of Natural SciencesFederal University of Piauí (UFPI)TeresinaBrazil
  4. 4.Department of ChemistryFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  5. 5.Center for the Development of the Nuclear Technology (CDTN)Belo HorizonteBrazil

Personalised recommendations