Hyperfine Interactions

, 238:49 | Cite as

Mössbauer study of Fe mineralogy with respect to rank, type and Colombian carboniferous zone

  • F. Reyes Caballero
  • S. A. Martínez OvalleEmail author
  • M. Díaz Lagos
  • O. P. Gómez
  • A. Blandón
Part of the following topical collections:
  1. Proceedings of the 15th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2016), 13-18 November 2016, Panama City, Panama


The transmission mode of Fe-57 Mössbauer spectroscopy was used to identify iron bearing minerals and establish relationships between and among these minerals and the ranks and types of various carboniferous zones in Colombia. Maceral and mineral compositions vary significantly among Colombian carboniferous zones. These variations determine some of the final characteristics and potential uses of coal, and therefore significantly contribute to defining coal quality. A comparison of spectroscopy results shows that the thermal maturity of the Colombian coals ranges from lignite to semianthracite. Similarities and differences exist with respect to conventional parameters. The coals of Córdoba and Cauca have higher sulfur contents > 2 % ash contents. Iron bearing minerals identified included pyrite, which was, found everywhere, and illite, ankerite, siderite, iron sulfates were found in particular areas. Coals from Valle del Cauca, Córdoba, Caldas and Santander are characterized by oxidation of pyrite and its transformation into ferrous or ferric sulfate.


Fe mineralogy Rank and type of Colombian coals Mössbauer spectroscopy 



We would like to thank COLCIENCIAS for its financial support of the “Study of Colombian coal deposits as promising sources of new commercial markets” (Code 110966044647).


  1. 1.
    Brownfield, M.E., Affolter, R.H., Cathcart, J.D., Johnson, S.Y., Brownfield, I.K., Rice, C.A.: Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. Int. J. Coal Geol. 63(3), 247–275 (2005)CrossRefGoogle Scholar
  2. 2.
    Finkelman, R.B., Gross, P.M.: The Types of data needed for assessing the environmental and human health impacts of coal. Int. J. Coal Geol. 40(2), 91–101 (1999)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Mastalerz, M., Schimmelmann, A.: Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int. J. Coal Geol. 104, 22–33 (2012)CrossRefGoogle Scholar
  4. 4.
    Scott, A.C.: Coal petrology and the origin of coal macerals: a way ahead?. Int. J. Coal Geol. 50(1), 119–134 (2002)CrossRefGoogle Scholar
  5. 5.
    Laxminarayana, C., Crosdale, P.J.: Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. Int. J. Coal Geol. 40(4), 309–325 (1999)CrossRefGoogle Scholar
  6. 6.
    Vassilev, S.V.: Methods for characterization of inorganic and mineral matter in coal: a critical overview. Energy Fuel 17(2), 271–281 (2003)CrossRefGoogle Scholar
  7. 7.
    Huggins, F.E.: Overview of analytical methods for inorganic constituents in coal. Int. J. Coal Geol. 50(1), 169–214 (2002)CrossRefGoogle Scholar
  8. 8.
    Gupta, R.: Advanced coal characterization: a review. Energy Fuel 21(2), 451–460 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lefelhocz, J.F., Friedel, R.A., Kohman, T.P.: Mössbauer spectroscopy of iron in coal. Geochim. Cosmochim. Acta 31(12), 2261–2273 (1967)ADSCrossRefGoogle Scholar
  10. 10.
    Huggins, F.E., Huffman, G.P.: Analytical Methods for Coal and Coal Products. Karr, C. (ed) 3, 371 (1979)Google Scholar
  11. 11.
    Stevens, J.G.: Mossbauer Spectroscopy and Its Chemical Applications. American Chemical Society (1981)Google Scholar
  12. 12.
    Stevens, J.G., Khasanov, A.M., Miller, J.B., Pollak, H., Li, Z.: Mössbauer Mineral HandbookGoogle Scholar
  13. 13.
    Standard, A.S.T.M: Standard Classification of Coals by Rank (2012)Google Scholar
  14. 14.
    ASTM, D.: 2798–06. Standard test method for microscopical determination of vitrinite reflectance of coal. ASTM InternationalGoogle Scholar
  15. 15.
    ASTM, D.: 2799-13. Standard Test Method for Microscopical Determination of the Maceral Composition of Coal. ASTM InternationalGoogle Scholar
  16. 16.
    Caballero, F.R., Ovalle, S.M., Gutiérrez, M.M.: Mössbauer characterization of feed coal, ash and fly ash from a thermal power plant. Hyperfine Interact. 232(1-3), 141–148 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Caballero, F.R.: Mössbauer study of the inorganic sulfur removal from coals. Hyperfine Interact. 224(1-3), 263–270 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Reyes, F., Alcázar, G.P., Barraza, J.M., Bohórquez, A., Tabares, J.A., Speziali, N.L.: Mössbauer and XRD characterization of the mineral matter of coal from the Guachinte mine in Colombia. Hyperfine Interact. 148(1-4), 39–46 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • F. Reyes Caballero
    • 1
  • S. A. Martínez Ovalle
    • 1
    Email author
  • M. Díaz Lagos
    • 2
  • O. P. Gómez
    • 3
  • A. Blandón
    • 4
  1. 1.Grupo de Física Nuclear Aplicada y SimulaciónUniversidad Pedagógica y Tecnológica de ColombiaTunjaColombia
  2. 2.Escuela de Ingeniería GeológicaUniversidad Pedagógica y Tecnológica de ColombiaSogamosoColombia
  3. 3.Escuela de Ingeniería de MinasUniversidad Pedagógica y Tecnológica de ColombiaSogamosoColombia
  4. 4.Departamento de Materiales y Minerales, Facultad de MinasUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations