Hyperfine Interactions

, 238:35 | Cite as

NUSTAR – The teenage years

Towards operation at FAIR
  • Alexander HerlertEmail author
Part of the following topical collections:
  1. Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznań, Poland, 16–19 May 2016


The “NUclear STructure, Astrophysics and Reactions” (NUSTAR) Collaboration was formed at the end of 2003. More than ten years later, a good fraction of the envisaged experimental equipment has been successfully developed and constructed. While the NUSTAR community is looking forward to the start of the civil construction for the new FAIR facility, existing NUSTAR equipment is tested and operated at radioactive ion beam facilities worldwide. The status of the project is briefly described at the stage when it enters the teenage years.


NUSTAR FAIR Nuclear structure Nuclear reactions Nuclear astrophysics 


29.38.-c Radioactive beams 29.25.Rm Sources of radioactive nuclei 29.40.-n Radiation detectors 29.20.-c Accelerators 21.10.-k Properties of nuclei Nuclear energy levels 


  1. 1.
    Herlert, A.: The NUSTAR program at FAIR – Overview and present status of the project. Eur. Phys. J. Web of Conferences 71, 00064 (2014)CrossRefGoogle Scholar
  2. 2.
    Nilsson, T.: The NUSTAR project at FAIR. Phys. Scripta T166, 014070 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Lalkovski, S., et al.: The UK NUSTAR Project. Acta Phys. Pol. B 47, 637–644 (2016)Google Scholar
  4. 4.
    Geissel, H., et al.: The super-FRS project at GSI. Nucl. Instrum. Meth. B 204, 71–85 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Geissel, H., et al.: Dispersion-matched spectrometer in the low-energy branch of the super- FRS for high-resolution measurements with large-emittance relativistic fragment beams. Nucl. Instrum. Meth. B 317, 277–283 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    FAIR Conceptual Design Report, GSI, November 2001. Accessed 6 February 2017
  7. 7.
    FAIR Baseline Technical Report, ISBN 3-9811298-0-6, September 2006. Accessed 6 February 2017
  8. 8.
    Golubev, P., et al.: The LundYorkCologne Calorimeter (LYCCA): concept, design and prototype developments for a FAIR-NUSTAR detector system to discriminate relativistic heavy-ion reaction products. Nucl. Instrum. Meth. A 723, 55–66 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Braga, D., et al.: AIDA: A 16-Channel Amplifier ASIC to Read out the Advanced Implantation Detector Array for Experiments in Nuclear Decay Spectroscopy. Proceedings of the 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and Their Applications (ANNIMMA 2011). IEEE Xplore. doi: 10.1109/ANIMMA.2011.6172853
  10. 10.
    Rodríguez, D., et al.: MATS And LaSpec: High-precision experiments using ion traps and lasers at FAIR. Eur. Phys. J. Spec. Top. 183, 1123 (2010)CrossRefGoogle Scholar
  11. 11.
    FAIR Green Paper: The Modularized Start Version, October 2009. Accessed 6 February 2017
  12. 12.
    Pietralla, N., et al.: On the Road to FAIR: 1st Operation of AGATA in preSPEC at GSI. Eur. Phys. J. Web of Conferences 66, 02083 (2014)CrossRefGoogle Scholar
  13. 13.
    NUSTAR Collaboration meeting “NUSTAR Week 2014” in Valencia, Spain, September 22-26, 2014. Accessed 6 February 2017
  14. 14.
    Xiang, Y., et al.: Cryogenics for super-FRS at FAIR. Physics Procedia 67, 847–852 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Scheidenberger, C., et al.: Unique separator-spectrometer experiments at the frontiers of nuclear physics: the super-FRS scientific program. Eur. Phys. J. Web of Conferences 66, 11034 (2014)CrossRefGoogle Scholar
  16. 16.
    Äystö, J., et al.: Experimental program of the super-FRS Collaboration at FAIR and developments of related instrumentation. Nucl. Instrum. Meth. B 376, 111–115 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Akkoyun, S., et al.: AGATAAdvanced GAmma Tracking Array. Nucl. Instrum. Meth. A 668, 26–58 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Garcia, A.R., et al.: MONSTER: A time of flight spectrometer for β-delayed neutron emission measurements. J. Instrum. 7, C05012 (2012)Google Scholar
  19. 19.
    Lalkovski, S., et al.: Construction of the UK DESPEC Array for Fast-Timing Measurements. Bulg. J. Phys. 42, 593–601 (2015)Google Scholar
  20. 20.
    Tain, J.L., et al.: A decay total absorption spectrometer for DESPEC at FAIR. Nucl. Instrum. Meth. A 803, 36–46 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Guadilla, V., et al.: First experiment with the NUSTAR/FAIR Decay Total Absorption γ-Ray Spectrometer (DTAS) at the IGISOL IV facility. Nucl. Instrum. Meth. B 376, 334–337 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Gerl, J., et al.: Towards detailed knowledge of atomic nucleithe past, present and future of nuclear structure investigations at GSI. Phys. Scripta 91, 103001 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Nörtershäuser, W., et al.: Laspec at FAIR’s low energy beamline: A new perspective for laser spectroscopy of radioactive nuclei. Hyperfine Interact 171, 149–156 (2006)CrossRefGoogle Scholar
  24. 24.
    Purushothaman, S., et al.: First experimental results of a cryogenic stopping cell with short-lived, heavy uranium fragments produced at 1000 MeV/u. Europhys. Lett. 104, 42001 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Dickel, T., et al.: Conceptional design of a novel next-generation cryogenic stopping cell for the Low-Energy Branch of the super-FRS. Nucl. Instrum. Meth. B 376, 216–220 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Ketelaer, J., et al.: TRIGA-SPEC: A Setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instrum. Meth. A 594, 162–177 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Kaufmann, S., et al.: TRIGA-SPEC: The prototype of MATS and LaSpec. J. Phys. Conf. Ser. 599, 012033 (2015)CrossRefGoogle Scholar
  28. 28.
    Gorges, C., et al.: Isotope shift of 40,42,44,48Ca in the 4s \(^{2}S_{1/2}\rightarrow 4_{p}^{2}P_{3/2}\) transition. J. Phys. B At. Mol. Opt. Phys. 48, 245008 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Gorges, C., et al.: Status of the TRIGA-LASER experiment. Hyperfine Interact., this issueGoogle Scholar
  30. 30.
    Eibach, M., et al.: Direct high-precision mass measurements on241,243Am,244Pu, and249Cf. Phys. Rev. C 89, 064318 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Smorra, C., et al.: Direct mass measurements of cadmium and palladium isotopes and their double-β transition Q values. Phys. Rev. C 85, 027601 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Schneider, F., et al.: Preparatory studies for a high-precision Penning-trap measurement of the163Ho electron capture Q-value. Eur. Phys. J. A 51, 89 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Maaß, B., et al.: Laser Spectroscopy on the proton-halo candiyear Boron-8. Hyperfine Interact., this issueGoogle Scholar
  34. 34.
    Savard, G., et al.: CARIBU: A new facility for the study of neutron-rich isotopes. Hyperfine Interact. 199, 301–309 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Savard, G., et al.: The CARIBU gas catcher. Nucl. Instrum. Meth. B 376, 246250 (2016)CrossRefGoogle Scholar
  36. 36.
    Aumann, T.: Reactions with fast radioactive beams of neutron-rich nuclei. Eur. Phys. J. A 26, 441478 (2005)CrossRefGoogle Scholar
  37. 37.
    Nilsson, T.: Nuclear reactions with radioactive beams at FAIR. Conf. Proc. Ital. Phys. Soc. 101, 103–112 (2010)Google Scholar
  38. 38.
    Gastineau, B., et al.: Progress in design and construction of the R3B-GLAD Large Acceptance Superconducting Dipole Spectrometer for GSI-FAIR. IEEE Trans. Appl. Supercon. 20, 328–331 (2010)Google Scholar
  39. 39.
    Boretzky, K., et al.: NeuLAND – from prototypes to double-planes. GSI Scientific Report 2014, 346–350 (2014). doi: 10.15120/GR-2014-1-FG-S-FRS-11
  40. 40.
    Boretzky, K., et al.: NeuLAND – from double-planes to the demonstrator. GSI Scientific Report 2015, 200–202 (2015). doi: 10.15120/GR-2015-1-MU-NUSTAR-NR-12
  41. 41.
    Pietras, B., et al.: CALIFA Barrel Prototype detector characterisation. Nucl. Instrum. Meth. A 729, 7784 (2013)CrossRefGoogle Scholar
  42. 42.
    Cortina-Gil, D., et al.: CALIFA, a Dedicated Calorimeter for the R3B/FAIR. Nucl. Data Sheets 120, 99–101 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Casarejos, E., et al.: The mechanical design of the BARREL section of the detector CALIFA for R3BFAIR. Eur. Phys. J. Web Conf. 66, 11037 (2014)Google Scholar
  44. 44.
    Casarejos, E., et al.: Design and construction of the structure of the DEMONSTRATOR of the CALIFA detector for R3B-FAIR using carbon-fiber composites. Eur. Phys. J. Web Conf. 66, 11038 (2014)CrossRefGoogle Scholar
  45. 45.
    Alvarez-Pol, H.: Performance analysis for the CALIFA Barrel calorimeter of the R3B experiment. Nucl. Instrum. Meth. A 767, 453–466 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Borrib, M., et al.: Detector production for the R3B Si-tracker. Nucl. Instrum. Meth. A 836, 105112 (2016)Google Scholar
  47. 47.
    Wamers, F., et al.: First observation of the unbound nucleus15Ne. Phys. Rev. Lett. 112, 132502 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Walker, P.M., et al.: The ILIMA project at FAIR. Int. J. Mass Spectrom. 349-350, 247–254 (2013)CrossRefGoogle Scholar
  49. 49.
    Simon, H.: The ELISe experiment at FAIR. Nucl. Phys. A 787, 102c–109c (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Antonov, A.N., et al.: The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) – A conceptual design study. Nucl. Instrum. Meth. A 637, 6076 (2011)CrossRefGoogle Scholar
  51. 51.
    Kiselev, O.A.: The EXL project, recent results and future perspectives. Phys. Scr. T166, 014004 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    von Schmid, M., et al.: First EXL experiment with stored radioactive beam: Proton scattering on 56Ni. Eur. Phys. J. Web Conf. 66, 03093 (2014)CrossRefGoogle Scholar
  53. 53.
    Zamora, J.C., et al.: First measurements of isoscalar giant resonances in a stored-beam experiment. Phys. Lett. B 763, 16–19 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Lestinsky, M., et al.: Physics book: CRYRING@ESR. Eur. Phys. J. Spec. Top. 225, 797–882 (2016)CrossRefGoogle Scholar
  55. 55.
    Armbruster, P., Münzenberg, G.: An experimental paradigm opening the world of superheavy elements. Eur. Phys. J. H 37, 237–309 (2012)CrossRefGoogle Scholar
  56. 56.
    Münzenberg, G.: From bohrium to copernicium and beyond SHE research at SHIP. Nucl. Phys. A 944, 5–29 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Block, M.: Direct mass measurements of the heaviest elements with Penning traps. Nucl. Phys. A 944, 471491 (2015)CrossRefGoogle Scholar
  58. 58.
    Block, M., et al.: Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785–788 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Backe, H., et al.: Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps. Nucl. Phys. A 944, 492517 (2015)CrossRefGoogle Scholar
  60. 60.
    Laatiaoui, M., et al.: Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495–498 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    Düllmann, C.E.: Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry. Radiochim. Acta 100, 67–74 (2012)Google Scholar
  62. 62.
    Amber, M., et al.: Status of the Superconducting cw LINAC at GSI, pp 337–346. World Scientific (2013). doi: 10.1142/97898145088650044

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.FAIR GmbHDarmstadtGermany

Personalised recommendations