Advertisement

Hyperfine Interactions

, 238:28 | Cite as

Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

  • V. Gadelshin
  • T. Cocolios
  • V. Fedoseev
  • R. Heinke
  • T. Kieck
  • B. Marsh
  • P. Naubereit
  • S. Rothe
  • T. Stora
  • D. Studer
  • P. Van Duppen
  • K. Wendt
Article
  • 174 Downloads
Part of the following topical collections:
  1. Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznan, Poland, 16–19 May 2016

Abstract

The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

Keywords

CERN-MEDICIS Lutetium Isotope separation Laser ionization spectroscopy 

PACS

28.60. + s 29.30.-h 32.10.Bi 32.30.-r 32.80.-t 42.62.Fi 87.19.xj 

References

  1. 1.
    dos Santos Augusto, R. M., et al.: CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility. Appl. Sci. 4, 265 (2014)CrossRefGoogle Scholar
  2. 2.
    Letokhov, V. S.: Laser Photoionization Spectroscopy, p 353. Academic Press, Orlando (1987)Google Scholar
  3. 3.
    Wendt, K., et al.: Laser resonance ionization for efficient and selective ionization of rare species. Nucl. Instrum. Methods Phys. Res. B 204, 325 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Tishchenko, V. K., et al.: Radiopharmaceuticals based on polyamino-phosphonic acids labeled with α-, β-, and γ-emitting radionuclides (Review). Pharm. Chem. J. 49(7), 3 (2015)CrossRefGoogle Scholar
  5. 5.
    Ljungberg, M., et al.: MIRD Pamphlet No. 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radio-pharmaceutical therapy. J. Nucl. Med. 57, 151 (2016)CrossRefGoogle Scholar
  6. 6.
    Bekov, G.I., Vidolova-Angelova, E.P.: Optimal scheme for multistage photoionization of lutetium atoms by laser radiation. Sov. J. Quant. Electron. 11(1), 137 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    Miller, C. M., Nogar, N. S.: Autoionizing and high-lying Rydberg states of lutetium atoms. AIP Conf. Proc. 90, 90 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    Krustev, Th.B., et al.: Determination of traces of lutetium in geological samples by resonance ionization spectroscopy. J. Anal. Atom. Spectrom. 8, 1029 (1993)CrossRefGoogle Scholar
  9. 9.
    Xu, C. B., et al.: The study of autoionizing states of lutetium atoms by resonance ionization spectroscopy. J. Phys. B: Atom. Molec. Opt. Phys. 26, 2821 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    D’yachkov, A. B., et al.: Selective photoionisation of lutetium isotopes. Quant. Electron. 42(10), 953 (2012)CrossRefGoogle Scholar
  11. 11.
    D’yachkov, A. B., et al.: Photoionization spectroscopy for laser extraction of the radioactive isotope Lu-177. Appl. Phys. B: Lasers Opt. 121, 425 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Naubereit, P., et al.: Resonance ionization spectroscopy of sodium Rydberg levels using difference frequency generation of high-repetition-rate pulsed Ti: Sapphire lasers. Phys. Rev. A 93(5), 052518 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Geppert, Ch: Laser systems for on-line laser ion sources. Nucl. Instrum. Methods Phys. Res. B 266, 4354 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Kurucz, R. L., Bell, B.: Atomic Line Data, Smithsonian Astrophysical Observatory. Cambridge, Kurucz CD-ROM No. 23 (1995)Google Scholar
  15. 15.
    Ralchenko, Yu., Kramida, A. E, Reader, J., NIST ASD Team: NIST Atomic Spectra Database (version 5), [Online]. Available: https://www.nist.gov/pml/atomic-spectra-database [2016, September]. National Institute of Standards and Technology, Gaithersburg, MD

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • V. Gadelshin
    • 1
    • 4
  • T. Cocolios
    • 2
  • V. Fedoseev
    • 3
  • R. Heinke
    • 1
  • T. Kieck
    • 1
  • B. Marsh
    • 3
  • P. Naubereit
    • 1
  • S. Rothe
    • 3
    • 5
  • T. Stora
    • 3
  • D. Studer
    • 1
  • P. Van Duppen
    • 2
  • K. Wendt
    • 1
  1. 1.Institute of PhysicsUniversity of MainzMainzGermany
  2. 2.Institute for Nuclear and Radiation PhysicsKU LeuvenLeuvenBelgium
  3. 3.EN DepartmentCERNGenevaSwitzerland
  4. 4.Faculty of Physics and TechnologyUral Federal UniversityYekaterinburgRussia
  5. 5.The University of ManchesterManchesterUK

Personalised recommendations