Advertisement

Hyperfine Interactions

, 238:31 | Cite as

Current status of GALS setup in JINR

  • S. Zemlyanoy
  • K. Avvakumov
  • V. Fedosseev
  • R. Bark
  • Z. Blazczak
  • Z. Janas
Article
Part of the following topical collections:
  1. Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: “Recent Achievements and Future Prospects” (LASER 2016), Poznań, Poland, 16–19 May 2016

Abstract

This is a brief report on the current status of the new GAs cell based Laser ionization Setup (GALS) at the Flerov Laboratory for Nuclear Reactions (FLNR) of the Joint Institute for Nuclear Research (JINR) in Dubna. GALS will exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the “north-east” region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are thermalized and neutralized in a high pressure gas cell and subsequently selectively laser re-ionized. In order to choose the best scheme of ion extraction the results of computer simulations of two different systems are presented. The first off- and online experiment will be performed on osmium atoms that is regarded as a most convenient element for producing isotopes with neutron number in the vicinity of the magic N = 126.

Keywords

Resonance ionization spectroscopy Ionization potential Multi-nucleon transfer reactions Gas cell Laser ionization Mass-separation 

PACS

25.60.Je 28.60. + s 42.62. Fi 

References

  1. 1.
    Zagrebaev, V.I., Zemlyanoy, S.G., Kozulin, E.M., Kudryavtsev, Y., Fedosseev, V., Bark, R., Othman, H.A.: Production and study of heavy neutron rich nuclei formed in multi-nucleon transfer reactions. Hyperfine Interacs. 216, 109 (2013)Google Scholar
  2. 2.
    Zagrebaev, V. I., Zemlyanoy, S. G., Kozulin, E. M., et al.: Gas-cell-based setup for the production and study of neutron rich heavy nuclei. Hyperfine Interact. 227, 181 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Zemlyanoy, S., Zagrebaev, V., Kozulin, E., Kudryavtsev, Y.u., Fedosseev, V., Bark, R., Janas, Z.: GALS - Setup for production and study of multinucleon transfer reaction products: present status. J. Phys.: Conf. Series 724, 012057 (2016)Google Scholar
  4. 4.
    Zagrebaev, V., Greiner, W.: Production of new heavy isotopes in Low-Energy multinucleon transfer reactions. Phys. Rev. Lett. 101, 122701 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Long, Z., Feng, Z.-Q., Zhang, F.-S.: Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model. J. Phys. G: Nucl. Part. Phys. 42, 085102 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Kurcewicz, J., Farinon, F., Geissel, H., et al.: Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS. Phys. Lett. B 717, 371 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Kudryavstev, Y. et al.: Beams of isotopes produced at LISOL by laser ionization after thermalization of energetic ions in a gas cell. Nucl. Instrum. Methods Phys. Res. B 204, 336 (2003)Google Scholar
  8. 8.
    Moore, I. D., et al.: Development of a laser ion source at IGISOL. J. Phys. G: Nucl. Part. Phys. 31, S1499 (2005)CrossRefGoogle Scholar
  9. 9.
    Campbell, P., Moore, I. D., Pearson, M. R.: Laser spectroscopy for nuclear structure physics. Prog. Particle Nucl. Phys. 86, 127 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Ravn, H. L., Allardyc, B. W.: On-line mass separators. In: Treatise on Heavy-Ion Science, vol. 8, p 363 (1989)Google Scholar
  11. 11.
    Kudryavtsev, Y. et al.: A gas cell for thermalizating, storing and transporting radioactive ions and atoms. Part I: Off-line studies with a laser ion source. Nucl. Instr. and Meth. B 179, 412 (2001)Google Scholar
  12. 12.
    Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, Vol. 6, 317 (1987)Google Scholar
  13. 13.
    Facina, M., et al.: A gas cell for thermalizing, storing and transporting radioactive ions and atoms. Part II: On-line studies with a laser ion source. Nucl. Instr. and Meth. B 226, 401 (2004)Google Scholar
  14. 14.
    Karpov, A.V.: EXON 2016 to be publishedGoogle Scholar
  15. 15.
    Corliss, C.H., Bozman, W.R.: Experimentsl transition probabilities for spectral lines of seventy elements. NBS Monograph 53 (1962)Google Scholar
  16. 16.
    Meggers, W.F., Corliss, C.H., Scribner, B.F.: Tables of spectral lines intensities (second edition). NBS Monograph 145 (1975)Google Scholar
  17. 17.
    https://www.nist.gov/pml/atomic-spectra-database (version 5, updated October 2015)
  18. 18.
    Sansonetti, J. E., Martin, W. C.: Handbook of basic atomic spectroscopic data. J. Phys. Chem. Reference Data 34, 1559 (2005)Google Scholar
  19. 19.
    Blum, J.D., Pellin, M. J., Calaway, W. F., et al.: Resonance ionization mass spectrometry of sputtered osmium and rhenium atoms. Anal. Chem. 62, 209 (1990)Google Scholar
  20. 20.
    Calaway, W. F., Wien, R. C., Burnett, D. S., et al.: Simultaneous dual-element analyses of refractory metals in naturally occurring matrices using resonance ionization of sputtered atoms. J. Vac. Sci. Technol. A 13, 1310 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • S. Zemlyanoy
    • 1
  • K. Avvakumov
    • 1
  • V. Fedosseev
    • 2
  • R. Bark
    • 3
  • Z. Blazczak
    • 4
  • Z. Janas
    • 5
  1. 1.Flerov Laboratory of Nuclear ReactionsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.CERNGenevaSwitzerland
  3. 3.iThemba LABSNat. Research FoundationPretoriaSouth Africa
  4. 4.Faculty of PhysicsA. Mickiewicz UniversityPoznanPoland
  5. 5.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations