Advertisement

Hyperfine Interactions

, 238:2 | Cite as

In and Cd as defect traps in titanium dioxide

  • Juliana SchellEmail author
  • Doru C. Lupascu
  • João Guilherme Martins Correia
  • Artur Wilson Carbonari
  • Manfred Deicher
  • Marcelo Baptista Barbosa
  • Ronaldo Domingues Mansano
  • Karl Johnston
  • Ibere S. Ribeiro Jr.
  • ISOLDE collaboration
Article
Part of the following topical collections:
  1. Proceedings of the 2nd Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2016), Cavtat, Croatia, 31 May-3 June 2016

Abstract

We present a study of TiO2 single crystals from the point of view of the dopant atom that simultaneously behaves as the probing element. We used gamma-gamma time dependent perturbed angular correlations working with selected tracer elements (111In/ 111Cd, 111mCd/ 111Cd) together to investigate the different behavior of Cd and In dopants, particularly their interaction with point defects in the TiO2 lattice. Results show that the hyperfine interactions observed at 111Cd from 111In or 111mCd decay are quite different. 111In/ 111Cd results show a single site fraction characterized by a quadrupole frequency with asymmetry parameter similar to those observed for the same probe nuclei in bulk TiO2 oxides. Results for 111mCd/ 111Cd reveal two site fractions, one characterized by the same hyperfine parameters to those measured in bulk TiO2 and another fraction characterized by a quadrupole frequency and asymmetry parameters with higher values, as observed in thin TiO2 films and correlated with point defects. The results are discussed emphasizing the differences for Cd and In as defect traps on TiO2.

Keywords

In and Cd doping Gamma-gamma PAC Titanium dioxide 

References

  1. 1.
    Chen, H., Wei, Z., Yan, K., Bai, Y., Yang, S.: Unveiling two electron-transport modes in oxygen-deficient TiO2 nanowires and their influence on photoelectrochemical operation. J. Phys. Chem. Lett. 5, 2890–2896 (2014)CrossRefGoogle Scholar
  2. 2.
    Choi, W., Termin, A., Hoffmann, M. R.: The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)CrossRefGoogle Scholar
  3. 3.
    Liu, B., Chen, H. M., Liu, C., Andrews, S. C., Hahn, C., Yang, P.: Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 135, 9995–9998 (2013)CrossRefGoogle Scholar
  4. 4.
    Li, Y., Guo, Y., Li, Y., Zhou, X.: Fabrication of Cd-Doped TiO2 nanorod arrays and photovoltaic property in perovskite solar cell. Elec. Acta 200, 29–36 (2016)CrossRefGoogle Scholar
  5. 5.
    Zaleska, A.: Doped-TiO2: a review. Recent Patents on Engineering 2, 157–164 (2008)CrossRefGoogle Scholar
  6. 6.
    Adams, J. M., Catchen, G. L.: Anomalous crystal chemistries of the 111→111Cd and 181→181Ta probes in rutile TiO2 studied using perturbed-angular-correlation spectroscopy. Phys. Rev. B 50, 1264–1267 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Schell, J.: Investigation of hyperfine parameters in pure and 3d transition metal doped SnO2 and TiO2 by means of perturbed gamma-gamma angular correlation spectroscopy. CERN-THESIS-2015-229. São Paulo University, Brazil (2015)Google Scholar
  8. 8.
    Darriba, G. N., Errico, L. A., Eversheim, P. D., Fabricius, G., Renteria, M.: First-principles and time differential yy perturbed-angular-correlation spectroscopy study of structural and electronic properties of Ta-doped TiO2 semiconductor. Phys. Rev. B 79, 115213/1–115213/12 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Banerjee, D., Das, S. K., Thakare, S. V., Nabhiraj, P. Y., Menon, R., Bhandari, R. K., Krishnan, K.: Study of surface-bulk mass transport and phase transformation in nano-TiO2 using hyperfine interaction technique. J. Phys. Chem. Sol. 71, 983–987 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Schatz, G., Weidinger, A.: Nuclear condensed matter physics: nuclear methods and applications. Wiley, Chichester (1996)Google Scholar
  11. 11.
    Abragam, A., Pound, R. V.: Influence of electric and magnetic fields on angular correlations. Phys. Rev. 92, 943–962 (1953)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Haas, H., Barbosa, M. B., Correia, J. G.: The quadrupole moments of Cd and Zn isotopes - an apology. Hyp. Int. Accepted for publication (2016)Google Scholar
  13. 13.
    Lupascu, D., Habenicht, S., Lieb, K. P., Neubauer, M., Uhrmacher, M., Wenzel, T.: Relaxation of electronic defects in pure and doped La2O3 observed by perturbed angular correlations. Phys. Rev. B 54, 871–883. doi:1996Google Scholar
  14. 14.
    Lupascu, D., Neubauer, M., Wenzel, T., Uhrmacher, M., Lieb, K. P.: Perturbed angular correlations in metal oxides with radioactive tracer beams. Nucl. Instrum. Meth. Phys. Res. B 113, 507–512 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Errico, L. A., Fabricius, G., Renterıa, M., de La Presa, P., Forker, M.: Anisotropic Relaxations Introduced by Cd impurities in rutile TiO2: first-principles calculations and experimental support. Phys. Rev. Lett. 89, 055503/1–055503/4 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Sena, C., Costa, M. S., Muñoz, E. L., Cabrera-Pasca, G. A., Pereira, L. F. D., Mestnik-Filho, J., Carbonari, A. W., Coaquira, J. A. H.: Charge distribution and hyperfine interactions in the vicinity of impurity sites in In2O3 doped with Fe, Co, and Ni. J. Magn. Magn. Mater. 387, 165–178 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Das, S. K., Thakare, S. V., Butz, T.: The nuclear quadrupole interaction at 111Cd and 181Ta sites in anatase and rutile TiO2: A TDPAC study. J. Phys. Chem. Sol. 70, 778–781 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Juliana Schell
    • 1
    • 2
    Email author
  • Doru C. Lupascu
    • 2
  • João Guilherme Martins Correia
    • 1
    • 3
  • Artur Wilson Carbonari
    • 4
  • Manfred Deicher
    • 5
  • Marcelo Baptista Barbosa
    • 6
  • Ronaldo Domingues Mansano
    • 7
  • Karl Johnston
    • 1
  • Ibere S. Ribeiro Jr.
    • 4
  • ISOLDE collaboration
    • 1
  1. 1.European Organization for Nuclear Research (CERN)GenevaSwitzerland
  2. 2.Institute for Materials Science and Center for Nanointegration, Duisburg-Essen (CENIDE)University of Duisburg-EssenEssenGermany
  3. 3.C2TN, Centro de Ciências e Tecnologias Nucleares, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  4. 4.Instituto de Pesquisas Energéticas e NuclearesUniversidade de São PauloSão PauloBrazil
  5. 5.ExperimentalphysikUniversität des SaarlandesSaarlandesGermany
  6. 6.Instituto de Física dos Materiais da Universidade do PortoPortoPortugal
  7. 7.Escola PolitécnicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations