Hyperfine Interactions

, 237:128 | Cite as

Mechanism of thermal decomposition of K2FeO4 and BaFeO4: A review

Part of the following topical collections:
  1. Proceedings of the 2nd Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2016), Cavtat, Croatia, 31 May-3 June 2016


This paper presents thermal decomposition of potassium ferrate(VI) (K2FeO4) and barium ferrate(VI) (BaFeO4) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe V and Fe IV as intermediate iron species using the applied techniques are given. Thermal decomposition of K2FeO4 involved Fe V, Fe IV, and K3FeO3 as intermediate species while BaFeO3 (i.e. Fe IV) was the only intermediate species during the decomposition of BaFeO4. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K2FeO4 and BaFeO4 under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.


High-valent iron species ferrate synchrotron radiation nuclear forward scattering Mössbauer spectroscopy hyperfine interactions 


  1. 1.
    Sharma, V.K., Chen, L., Marsalek, B., Zboril, R., O’Shea, K.E., Dionysiou, D.D.: Water Sci. Technol. Water Suppl. (2016). In pressGoogle Scholar
  2. 2.
    Sharma, V.K.: J. Environ. Manag. 92, 1051–1073 (2011)CrossRefGoogle Scholar
  3. 3.
    Machala, L., Filip, J., Prucek, R., Tucek, J., Frydrych, J., Sharma, V.K., Zboril, R.: Sci. Adv. Mater. 7, 579–587 (2015)CrossRefGoogle Scholar
  4. 4.
    Machala, L., Zboril, R., Gedanken, A.: J. Phys. Chem. B 111, 4003–4018 (2007)CrossRefGoogle Scholar
  5. 5.
    Farmand, M., Jiang, D., Wang, B., Ghosh, S., Ramaker, D.E., Licht, S., Electrochem, S.: Communications 13, 909–912 (2011)Google Scholar
  6. 6.
    Delaude, L., Laszlo, P.: J. Org. Chem. 61, 6360–6370 (1996)CrossRefGoogle Scholar
  7. 7.
    Sarma, R., Angeles-Boza, A.M., Brinkley, D.W., Roth, J.P.: J. Am. Chem. Soc. 134, 15371–15386 (2012)CrossRefGoogle Scholar
  8. 8.
    Karlesa, A., De Vera, G.A.D., Dodd, M.C., Park, J., Espino, M.P.B., Lee, Y.: Environ. Sci. Technol. 48, 10380–10389 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Jiang, J.Q.: Desalin. Water Treat. 55, 828–835 (2015)CrossRefGoogle Scholar
  10. 10.
    Sharma, V.K., Chen, L., Zboril, R.: ACS Sustainable. Chem. Eng. 4, 18–34 (2016)Google Scholar
  11. 11.
    Sharma, V.K., Zboril, R., Varma, R.S.: Acc. Chem. Res. 48, 182–191 (2015)CrossRefGoogle Scholar
  12. 12.
    Feng, M., Wang, X., Chen, J., Qu, R., Sui, Y., Cizmas, L., Wang, Z., Sharma, V.K.: Water Res. 103, 48–57 (2016)CrossRefGoogle Scholar
  13. 13.
    Kralchevska, R.P., Prucek, R., Kolarík, J., Tucek, J., Machala, L., Filip, J., Sharma, V.K., Zboril, R.: Water Res. 103, 83–91 (2016)CrossRefGoogle Scholar
  14. 14.
    Kim, C., Panditi, V.R., Gardinali, P.R., Varma, R.S., Kim, H., Sharma, V.K.: Chem. Eng. J. 279, 307–316 (2015)CrossRefGoogle Scholar
  15. 15.
    Sharma, V.K., Johnson, N., Cizmas, L., McDonald, T.J., Kim, H.: Chemosphere (2016). In PressGoogle Scholar
  16. 16.
    Lee, Y., Kissner, Y., von Gunten, U.: Environ. Sci. Technol. 48, 5154–5162 (2014)Google Scholar
  17. 17.
    Sharma, V.K., Luther, III, G.W., Millero, F.J.: Chemosphere 82, 1083–1089 (2011)Google Scholar
  18. 18.
    Sharma, V.K., Homonnay, Z., Siskova, K., Machala, L., Zboril, R.: Hyperfine Interact. 224, 7–13 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Sharma, V.K., Siskova, K., Machala, L., Zboril, R.: AIP Conf. Proc. 1489, 139–144 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Machala, L., Zboril, R., Sharma, V.K.: Z. Homonnay 1070, 114–121 (2008)Google Scholar
  21. 21.
    Machala, L., Zboril, R., Sharma, V.K., Filip, J., Schneeweiss, O., Homonnay, Z.: J. Phys. Chem. B 111, 4280–4286 (2007)CrossRefGoogle Scholar
  22. 22.
    Kolár, M., Novák, P., Šišková, K. M., Machala, L., Malina, O., Tucek, J., Sharma, V.K., Zboril, R.: I, Phys. Chem. Chem. Phys. 18, 4415–4422 (2016)CrossRefGoogle Scholar
  23. 23.
    Kralchevska, R.P., Sharma, V.K., Machala, L., Zboril, R.: Chemosphere 144, 1161 (2016)CrossRefGoogle Scholar
  24. 24.
    Sharma, V.K., Zboril, R.: Croat. Chem. Acta 88, 363–368 (2015)CrossRefGoogle Scholar
  25. 25.
    Casbeer, E.M., Sharma, V.K., Zajickova, Z., Dionysiou, D.D.: Environ. Sci. Technol. 47, 4572–4580 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Rush, J.D., Bielski, B.H.J.: Inorg. Chem. 33, 5499–5502 (1994)CrossRefGoogle Scholar
  27. 27.
    Bielski, B.H.J., Sharma, V.K., Czapski, G.: Radiat. Phys. Chem. 44, 479–484 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Machala, L., Prochazka, V., Miglierini, M., Sharma, V.K., Marusak, Z., Wille, H., Zboril, R.: Phys. Chem. Chem. Phys. 17, 21787–21790 (2015)CrossRefGoogle Scholar
  29. 29.
    Machala, L., Sharma, V.K., Kuzmann, E., Homonnay, Z., Filip, J., Kralchevska, R.P.: J. Alloys Compd. 668, 73–79 (2016)CrossRefGoogle Scholar
  30. 30.
    Scholder, R.: Bull. Soc. Chim. France. 4, 1112–1114 (1965)Google Scholar
  31. 31.
    Ichida, T.: J. Solid State Chem. 7, 308–315 (1973)ADSCrossRefGoogle Scholar
  32. 32.
    Ni, X., Ji, M., Yang, Z., Zheng, H.: J. Cryst. Growth 261, 82–86 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Madarász, J., Zbořil, R., Homonnay, Z., Sharma, V.K., Pokol, G.: J. Solid State Chem. 179, 1426–1433 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Environmental and Occupational Health, School of Public HealthTexas A&M UniversityCollege StationUSA
  2. 2.Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations