Hyperfine Interactions

, 237:51 | Cite as

Electrochemical properties of Ti-Ni-Sn materials predicted by 119Sn Mössbauer spectroscopy

  • A. Ladam
  • L. Aldon
  • P.-E. Lippens
  • J. Olivier-Fourcade
  • J.-C. Jumas
  • C. Cenac-Morthe
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015


The electrochemical activity of TiNiSn, TiNi 2Sn and Ti 6Sn 5 compounds considered as negative electrode materials for Li-ion batteries has been predicted from the isomer shift- Hume-Rothery electronic density correlation diagram. The ternary compounds were obtained from solid-state reactions and Ti 6Sn 5 by ball milling. The 119Sn Mössbauer parameters were experimentally determined and used to evaluate the Hume-Rothery electronic density [e av]. The values of [e av] are in the region of Li-rich Li-Sn alloys for Ti 6Sn 5 and outside this region for the ternary compounds, suggesting that the former compound is electrochemically active but not the two latter ones. Electrochemical tests were performed for these different materials confirming this prediction. The close values of [e av] for Ti 6Sn 5 and Li-rich Li-Sn alloys indicate that the observed good capacity retention could be related to small changes in the global structures during cycling.


119Sn Mössbauer hyperfine parameters Li-ion batteries Ti-Ni-Sn Predictive model Hume-Rothery Sn-based electrode materials 


  1. 1.
    Courtney, I.A., Dahn, J.R.: J. Electrochem. Soc. 144, 2045 (1997)CrossRefGoogle Scholar
  2. 2.
    Nuli, Y.N., Zhao, S.L., Qin, Q.Z.: J. Power Sources 114, 113 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Mouyane, M., Aldon, L., Womes, M., Ducourant, B., Jumas, J.-C., Olivier-Fourcade, J.: J. Power Sources 189, 818 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Naille, S., Jumas, J.-C., Lippens, P.-E., Olivier-Fourcade, J.: J. Power Sources 189, 814 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Robert, F., Lippens, P.-E., Olivier-Fourcade, J., Jumas, J.-C., Morcrette, M.: J. Power Sources 146, 492 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Robert, F., Lippens, P.-E., Olivier-Fourcade, J., Jumas, J.-C., Gillot, F., Morcrette, M., Tarascon, J.-M.: J. Solid State Chem. 180, 339 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Lippens, P.-E., El Khalifi, M., Chamas, M., Perea, A., Sougrati, M.-T., Ionica-Bousquet, C.M., Aldon, L., Olivier-Fourcade, J., Jumas, J.-C.: Hyperfine Interact. 206, 35 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Hume-Rothery, W.: J. Inst. Met. 35, 295 (1926)Google Scholar
  9. 9.
    Schubert, K., Frank, G., Gohle, R., Maldonado, A., Meissner, H.G., Raman, A., Rossteutscher, W.: Naturwissenschaften 50, 41 (1963)ADSCrossRefGoogle Scholar
  10. 10.
    O’Brien, J.W., Dunlap, R., Dahn, J.R.: J. Alloys Compd. 353, 60 (2003)CrossRefGoogle Scholar
  11. 11.
    Romaka, V.V., Rogl, P., Romaka, L., Stafnyk, Y.u., Melnychenko, N., Grytsiv, A.: J. Solid State Chem. 197, 103 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Ladam
    • 1
  • L. Aldon
    • 1
  • P.-E. Lippens
    • 1
  • J. Olivier-Fourcade
    • 1
  • J.-C. Jumas
    • 1
  • C. Cenac-Morthe
    • 2
  1. 1.Institut Charles Gerhardt, UMR 5253 CNRSUniversité de MontpellierMontpellierFrance
  2. 2.CNES, Service DCT/TV/ElToulouseFrance

Personalised recommendations