Advertisement

Hyperfine Interactions

, 237:37 | Cite as

5 7 Fe Emission Mössbauer Study on Gd 3 Ga 5 O 1 2 implanted with dilute 5 7 Mn

  • P. B. Krastev
  • H. P. GunnlaugssonEmail author
  • K. Nomura
  • V. Adoons
  • A. M. Gerami
  • K. Johnston
  • M. Ncube
  • R. Mantovan
  • H. Masenda
  • Y. A. Matveyev
  • T. E. Mølholt
  • I. Unzueta
  • K. Bharuth-Ram
  • H. Gislason
  • G. Langouche
  • D. Naidoo
  • S. Ólafsson
  • the ISOLDE collaboration
Article
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015

Abstract

57Fe emission Mössbauer spectroscopy has been applied to study the lattice location and properties of Fe in gadolinium gallium garnet Gd3Ga5 O 12 (GGG) single crystals in the temperature interval 300 – 563 K within the extremely dilute (<10−4 at.%) regime following the implantation of57Mn (T 1 / 2= 1.5 min.) at ISOLDE/CERN. These results are compared with earlier Mössbauer spectroscopy study of Fe-doped gadolinium gallium garnet Gd3Ga5 O 12(GGG), with implantation fluences between 8×1015 and 6×1016 atoms cm−2. Three Fe components are observed in the emission Mössbauer spectra: (i) high spin Fe2+ located at damage sites due to the implantation process, (ii) high spin Fe3+ at substitutional tetrahedral Ga sites, and (iii) interstitial Fe, probably due to the recoil imparted on the daughter57∗Fe nucleus in the β decay of57Mn. In contrast to high fluence57Fe implantation studies the Fe3+ ions are found to prefer the tetrahedral Ga site over the octahedral Ga site. No annealing stages are evident in the temperature range investigated. Despite the very low concentration, high-spin Fe3+ shows fast spin relaxation, presumably due to an indirect interaction between nearby gadolinium atoms.

Keywords

Gadolinium gallium garnet (Gd3Ga5O1257Mn implantation Mössbauer emission spectroscopy Fe sites 

References

  1. 1.
    Provenzano, V., Li, J., King, T., Canavan, E., Shirron, P., DiPirro, M., Shull, R.D.: Enhanced magnetocaloric effects in R3(Ga1-xFex)5 O 12 (R =Gd, Dy, Ho; 0<x<1) nanocomposites. J. Magn. Magn. Mater 266, 185–193 (2003). doi: 10.1016/S0304-8853(03)00470-0 ADSCrossRefGoogle Scholar
  2. 2.
    Matsumoto, K., Matsuzakiy, A., Kamiya, K., Numazawa, T.: Magnetocaloric effect, specific heat, and entropy of iron-substituted Gadolinium Gallium Garnets Gd3(Ga1-xFex)5 O 12. Jpn. J. Appl. Phys 48, 113002 (2009). doi: 10.1143/JJAP.48.113002 ADSCrossRefGoogle Scholar
  3. 3.
    Momma, K., Izumi, F.: VESTA 3 For three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). doi: 10.1107/S0021889811038970 CrossRefGoogle Scholar
  4. 4.
    Szucs, I., Dezsi, I., Fetzer, Cs., Langouche, G.: Iron implantation in gadolinium gallium garnet studied by conversion-electron Mössbauer spectroscopy. J. Phys. Condens Mat 10, 101–110 (1998). doi: 10.1088/0953-8984/10/1/012 ADSCrossRefGoogle Scholar
  5. 5.
    Fedoseyev, V.N., Bätzner, K., Catherall, R., Evensen, A.H.M., Forkel-Wirth, D., Jonsson, O.C., Kugler, E., Lettry, J., Mishin, V.I., Ravn, H.L., Weyer, G., ISOLDE Collaboration: Chemically selective laser ion source of manganese. Nucl. Instr. Meth. B 126, 88–91 (1997). doi: 10.1016/S0168-583X(96)01077-4 ADSCrossRefGoogle Scholar
  6. 6.
    Dezsi, I., Coussement, R., Feher, S., Langouche, G., Fetzer, Cs.: The charge states of iron in insulators implanted with57Co and57Fe. Hyperfine Interact. 29, 1275–1278 (1986). doi: 10.1007/BF02399467 ADSCrossRefGoogle Scholar
  7. 7.
    Ubizskii, S.B., Matkovskii, A.O., Mironova-Ulmane, N., Skvortsova, V., Suchocki, A., Zhydachevskii, Y.A., Potera, P.: Displacement Defect Formation in Complex Oxide Crystals. Phys. Stat. Sol. (a) 177, 349–366 (2000). doi: 10.1002/(SICI)1521-396X(200002)177:2349::AID-PSSA3493.0.CO;2-B ADSCrossRefGoogle Scholar
  8. 8.
    Gunnlaugsson, H.P., Mølholt, T.E., Mantovan, R., Masenda, H., Naidoo, D., Dlamini, W.B., Sielemann, R., Bharuth-Ram, K., Weyer, G., Johnston, K., Langouche, G., Ólafsson, S., Gislason, H.P., Kobayashi, Y., Yoshida, Y., Fanciulli, M., the ISOLDE Collaboration: Paramagnetism in Mn/Fe implanted ZnO. Appl. Phys. Lett. 97, 142501 (2010). doi: 10.1063/1.3490708 ADSCrossRefGoogle Scholar
  9. 9.
    Gunnlaugsson, H.P., Mantovan, R., Mølholt, T.E., Naidoo, D., Johnston, K., Masenda, H., Bharuth-Ram, K., Langouche, G., Ólafsson, S., Sielemann, R., Weyer, G., Kobayashi, Y., the ISOLDE collaboration: Mössbauer spectroscopy of57Fe in -Al2 O 3 following implantation of57Mn. Hyperfine Interact. 198, 5–13 (2010). doi: 10.1007/s10751-010-0184-5 ADSCrossRefGoogle Scholar
  10. 10.
    Mantovan, R., Gunnlaugsson, H.P., Johnston, K., Masenda, H., Mølholt, T.E., Naidoo, D., Ncube, M., Shayestehaminzadeh, S., Bharuth-Ram, K., Fanciulli, M., Gislason, H.P., Langouche, G., Ólafsson, S., Pereira, L.M.C., Wahl, U., Torelli, P., Weyer, G.: Atomic-scale magnetic properties of truly 3d-diluted ZnO. Adv. Electron. Mater 1, 1400039 (2015). doi: 10.1002/aelm.201400039 CrossRefGoogle Scholar
  11. 11.
    Mølholt, T.E., Gunnlaugsson, H.P., Johnston, K., Mantovan, R., Masenda, H., Ólafsson, S., Bharuth-Ram, K., Gislason, H.P., Langouche, G., Weyer, G., the ISOLDE Collaboration: Spin-lattice relaxations of paramagnetic Fe\(_{+}^{\mathrm {3}}\) in ZnO. Phys. Scripta T148, 014006 (2012). doi: 10.1088/0031-8949/2012/T148/014006 ADSCrossRefGoogle Scholar
  12. 12.
    McMichael, R.D., Ritter, J.J., Shull, R.D.: Enhanced magnetocaloric effect in Gd3Ga\(_{5_{x}}\) Fex O12. J. Appl. Phys 73, 6946 (1993). doi: 10.1063/1.352443 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • P. B. Krastev
    • 1
  • H. P. Gunnlaugsson
    • 2
    Email author
  • K. Nomura
    • 3
  • V. Adoons
    • 4
  • A. M. Gerami
    • 2
    • 5
  • K. Johnston
    • 2
  • M. Ncube
    • 6
  • R. Mantovan
    • 7
  • H. Masenda
    • 6
  • Y. A. Matveyev
    • 8
  • T. E. Mølholt
    • 2
  • I. Unzueta
    • 9
  • K. Bharuth-Ram
    • 10
    • 13
  • H. Gislason
    • 11
  • G. Langouche
    • 12
  • D. Naidoo
    • 6
  • S. Ólafsson
    • 11
  • the ISOLDE collaboration
    • 2
  1. 1.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.CERNGeneveSwitzerland
  3. 3.Tokyo University of ScienceTokyoJapan
  4. 4.Physics and Engineering DepartmentUniversity of ZululandZululandSouth Africa
  5. 5.Department of PhysicsK.N. Toosi University of TechnologyTehranIran
  6. 6.School of PhysicsUniversity of the WitwatersrandWitwatersrandSouth Africa
  7. 7.Laboratorio MDMIMM-CNRAgrate BrianzaItaly
  8. 8.Moscow Institute of Physics and TechnologyMoscow RegionRussia
  9. 9.BCMaterials & Elektrizitate eta Elektronika SailaEuskal Herriko Unibertsitatea (UPV/EHU)BilbaoSpain
  10. 10.Physics DepartmentDurban University of TechnologyDurbanSouth Africa
  11. 11.Science InstituteUniversity of IcelandReykjavíkIceland
  12. 12.Instituut voor Kern- en StralingsfysikaUniversity of LeuvenLeuvenBelgium
  13. 13.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations