Advertisement

Hyperfine Interactions

, 237:75 | Cite as

57Fe emission Mössbauer spectroscopy following dilute implantation of 57Mn into In 2O3

  • A. Mokhles Gerami
  • K. Johnston
  • H. P. GunnlaugssonEmail author
  • K. Nomura
  • R. Mantovan
  • H. Masenda
  • Y. A. Matveyev
  • T. E. Mølholt
  • M. Ncube
  • S. Shayestehaminzadeh
  • I. Unzueta
  • H. P. Gislason
  • P. B. Krastev
  • G. Langouche
  • D. Naidoo
  • S. Ólafsson
  • the ISOLDE collaboration
Article
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015

Abstract

Emission Mössbauer spectroscopy has been utilised to characterize dilute 57Fe impurities in In 2O3 following implantation of 57Mn (T 1/2 = 1.5 min.) at the ISOLDE facility at CERN. From stoichiometry considerations, one would expect Fe to adopt the valence state 3 + , substituting In 3+, however the spectra are dominated by spectral lines due to paramagnetic Fe2+. Using first principle calculations in the framework of density functional theory (DFT), the density of states of dilute Fe and the hyperfine parameters have been determined. The hybridization between the 3d-band of Fe and the 2p band of oxygen induces a spin-polarized hole on the O site close to the Fe site, which is found to be the cause of the Fe2+ state in In 2O3. Comparison of experimental data to calculated hyperfine parameters suggests that Fe predominantly enters the 8b site rather than the 24d site of the cation site in the Bixbyite structure of In 2O3. A gradual transition from an amorphous to a crystalline state is observed with increasing implantation/annealing temperature.

Keywords

In 2O3 Fe doping 57Mn implantation Emission Mössbauer spectroscopy Annealing Density functional theory 

References

  1. 1.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors. Science 287, 1019–1022 (2000). doi: 10.1126/science.287.5455.1019 ADSCrossRefGoogle Scholar
  2. 2.
    He, J., Xu, S., Yoo, Y.K., Xue, Q., Lee, H.-C., Cheng, S., Xiang, X.D., Dionne, G.F., Takeuchi, I.: Room temperature ferromagnetic n -type semiconductor in (In 1−xFex)2 O 3−σ. Appl. Phys. Lett. 86, 052503 (2005). doi: 10.1063/1.1851618 ADSCrossRefGoogle Scholar
  3. 3.
    Yan, S., Qiao, W., Zhong, W., Au, C. -T., Dou, Y.: Effects of site occupancy and valence state of Fe ions on ferromagnetism in Fe-doped In 2 O 3 diluted magnetic semiconductor. Appl. Phys. Lett. 104, 062404 (2014). doi: 10.1063/1.4865102 ADSCrossRefGoogle Scholar
  4. 4.
    Yang, D., Feng, D., Wu, Z., Ma, G., Liu, J., An, Y.: Structure, optical and magnetic properties of (In 1−xFe x)2 O 3 films by magnetron sputtering. J. Alloy. Compd. 619, 869–875 (2015). doi: 10.1016/j.jallcom.2014.09.094 CrossRefGoogle Scholar
  5. 5.
    Bierwagen, O.: Indium oxide—a transparent, wide-band gap semiconductor for (opto)electronic applications. Semicond. Sci. Technol. 30, 024001 (2015). doi: 10.1088/0268-1242/30/2/024001 ADSCrossRefGoogle Scholar
  6. 6.
    Hu, S.-j., Yan, S.-s., Lin, X.-l., Yao, X.-x., Chen, Y.-x., Liu, G.-l., Mei, L.-m.: Electronic structure of Fe-doped In 2 O 3 magnetic semiconductor with oxygen vacancies: Evidence for F-center mediated exchange interaction. Appl. Phys. Lett. 91, 262514 (2007). doi: 10.1063/1.2828041 ADSCrossRefGoogle Scholar
  7. 7.
    Huang, L.M., Moysés, C., Araújo, Ahuja, R.: Magnetic and electronic properties of 3d transition-metal-doped In 2 O 3: an ab initio study. Europhys. Lett. 87, 27013 (2009). doi: 10.1209/0295-5075/87/27013 ADSCrossRefGoogle Scholar
  8. 8.
    Qi, S., Jiang, F., Fan, J., Wu, H., Zhang, S.B., Gehring, G.A., Zhang, Z., Xu, X.: Carrier-mediated nonlocal ferromagnetic coupling between local magnetic polarons in Fe-doped In 2 O 3 and Co-doped ZnO. Phys. Rev. B 205204, 84 (2011). doi: 10.1103/PhysRevB.84.205204 Google Scholar
  9. 9.
    Kohiki, S., Sasaki, M., Murakawa, Y., Hori, K., Okada, K., Shimooka, H., Tajiri, T., Deguchi, H., Matsushima, S., Oku, M., Shishido, T., Arai, M., Mitome, M., Bando, Y.: Doping of Fe to In 2 O 3. Thin Solid Films 505, 122–125 (2006). doi: 10.1016/j.tsf.2005.10.022 ADSCrossRefGoogle Scholar
  10. 10.
    Xu, X. -H., Jiang, F. -X., Zhang, J., Fan, X. -C., Wu, H. -S., Gehring, G.A.: Magnetic and transport properties of n-type Fe-doped In 2 O 3 ferromagnetic thin films. Appl. Phys. Lett. 212510, 94 (2009). doi: 10.1063/1.3147190 Google Scholar
  11. 11.
    Jiang, F. -X., Xu, X. -H., Zhang, J., Fan, X. -C., Wu, H. -S., Alshammari, M., Feng, Q., Blythe, H.J., Score, D.S., Addison, K., Al-Qahtani, M., Gehring, G.A.: Room temperature ferromagnetism in metallic and insulating (In 1−xFe x)2 O 3 thin films. J. Appl. Phys. 109, 053907 (2011). doi: 10.1063/1.3559298 ADSCrossRefGoogle Scholar
  12. 12.
    Tandon, B., Shanker, G.S., Nag, A.: Multifunctional Sn-, Fe-codoped In 2 O 3 nanocrystals plasmonics and magnetism. J. Phys. Chems. Lett. 5, 2306–2311 (2014). doi: 10.1021/jz500949g CrossRefGoogle Scholar
  13. 13.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties, ISBN 3-9501031-1-2, Karlheinz Schwarz, Techn. Universität Wien, Austria (2001)Google Scholar
  14. 14.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Physical Review Letters 77, 3865 (1996). doi: 10.1103/PhysRevLett.77.3865ADSCrossRefGoogle Scholar
  15. 15.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Koblar, J.A., Pederson, M.R., Singh, D.J., Fiolhais C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992). doi: 10.1103/PhysRevB.46.6671 ADSCrossRefGoogle Scholar
  16. 16.
    Neese, F.: Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg. Chim. Acta 337, 181–192 (2002). doi: 10.1016/S0020-1693(02)01031-9 CrossRefGoogle Scholar
  17. 17.
    Wdowik, U.D., Ruebenbauer, K.: Calibration of the isomer shift for the 14.4 −keV transition in Fe 57 using the full-potential linearized augmented plane-wave method. Phys. Rev. B 76, 155118 (2007). doi: 10.1103/PhysRevB.76.155118 ADSCrossRefGoogle Scholar
  18. 18.
    Dufek, P., Blaha, P., Schwarz, K.: Determination of the nuclear quadrupole moment of 57Fe. Phys. Rev. Lett. 75, 3545–3548 (1995). doi: 10.1103/PhysRevLett.75.3545 ADSCrossRefGoogle Scholar
  19. 19.
    Gunnlaugsson, H.P.: Spreadsheet based analysis of Mössbauer spectra hyperfine interact. accepted (2015)Google Scholar
  20. 20.
    Gunnlaugsson, H.P.: A simple model to extract hyperfine interaction distributions from Mössbauer spectra. Hyperfine Interact 167, 851–854 (2006). doi:10.1007/978-3-540-49853-724 ADSCrossRefGoogle Scholar
  21. 21.
    Gunnlaugsson, H.P., Mantovan, R., Mølholt, T.E., Naidoo, D., Johnston, K., Masenda, H., Bharuth-Ram, K., Langouche, G., Ólafsson, S., Sielemann, R., Weyer, G., Kobayashi, Y.: the ISOLDE Collaboration: Mössbauer spectroscopy of 57Fe in -Al 2 O 3 following implantation of 57Mn . Hyperfine Interact 198, 5–14 (2010). doi: 10.1007/s10751-010-0184-5 ADSCrossRefGoogle Scholar
  22. 22.
    Mølholt, T.E., Mantovan, R., Gunnlaugsson, H.P., Naidoo, D., Ólafsson, S., Bharuth-Ram, K., Fanciulli, M., Johnston, K., Kobayashi, Y., Langouche, G., Masenda, H., Sielemann, R., Weyer, G., Gíslason, H.P.: Observation of spin-lattice relaxations of dilute Fe 3+ in MgO by Mössbauer spectroscopy. Hyperfine Interact 197, 89–94 (2010). doi: 10.1007/s10751-010-0214-3 ADSCrossRefGoogle Scholar
  23. 23.
    Mantovan, R., Gunnlaugsson, H.P., Johnston, K., Masenda, H., Mølholt, T.E., Naidoo, D., Ncube, M., Shayestehaminzadeh, S., Bharuth-Ram, K., Fanciulli, M., Gislason, H.P., Langouche, G., Ólafsson, S., Pereira, L.M.C., Wahl, U., Torelli, P., Weyer, G.: Atomic-scale magnetic properties of truly 3d-diluted ZnO. Adv. Electron. Mater. 1, 1400039 (2015). doi: 10.1002/aelm.201400039 CrossRefGoogle Scholar
  24. 24.
    Walsh, A., Woodley, S.M., Richard, C., Catlow, A., Sokol, A.A.: Potential energy landscapes for anion Frenkel-pair formation in ceria and India. Solid State Ionics 184, 52–56 (2011). doi: 10.1016/j.ssi.2010.08.010 CrossRefGoogle Scholar
  25. 25.
    Nomura, K., Sakuma, J., Ooki, T., Takeda, M.: Mössbauer study on indium tin oxides (ITO) doped with Fe. Hyperfine Interact 184, 117–121 (2008). doi: 10.1007/s10751-008-9775-9 ADSCrossRefGoogle Scholar
  26. 26.
    Sena, C., Costa, M.S., Muñoz, E.L., Cabrera-Pasca, G.A., Pereira, L.F.D., Mestnik-Filho, J., Carbonari, A.W., Coaquira, J.A.H.: Charge distribution and hyperfine interactions in the vicinity of impurity sites in In 2 O 3 doped with Fe, Co, and Ni. J. Magn. Magn. Mat. 387, 165–178 (2015). doi: 10.1016/j.jmmm.2015.03.092 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Mokhles Gerami
    • 1
    • 2
  • K. Johnston
    • 1
    • 3
  • H. P. Gunnlaugsson
    • 1
    Email author
  • K. Nomura
    • 4
  • R. Mantovan
    • 5
  • H. Masenda
    • 6
  • Y. A. Matveyev
    • 7
  • T. E. Mølholt
    • 1
  • M. Ncube
    • 6
  • S. Shayestehaminzadeh
    • 8
  • I. Unzueta
    • 9
  • H. P. Gislason
    • 8
  • P. B. Krastev
    • 10
  • G. Langouche
    • 11
  • D. Naidoo
    • 6
  • S. Ólafsson
    • 8
  • the ISOLDE collaboration
    • 1
  1. 1.CERNPH DivGeneve 23Switzerland
  2. 2.Department of physicsK.N.Toosi University of TechnologyTehranIran
  3. 3.Universität des Saarlandes, ExperimentalphysikSaarbruckenGermany
  4. 4.Photocatalysis International Research CenterTokyo University of ScienceNodaJapan
  5. 5.Laboratorio MDMIMM-CNRAgrate BrianzaItaly
  6. 6.School of PhysicsUniversity of the WitwatersrandWitwatersrandSouth Africa
  7. 7.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  8. 8.Science InstituteUniversity of IcelandReykjavíkIceland
  9. 9.BCMaterials & Elektrizitate eta Elektronika SailaEuskal Herriko Unibertsitatea (UPV/EHU)BilbaoSpain
  10. 10.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  11. 11.KU LeuvenInstituut voor Kern-en Stralings FysikaLeuvenBelgium

Personalised recommendations