Hyperfine Interactions

, 237:54 | Cite as

Mössbauer and X-ray study of biodegradation of 57Fe3O4 magnetic nanoparticles in rat brain

  • R. R. Gabbasov
  • V. M. Cherepanov
  • M. A. Chuev
  • A. A. Lomov
  • I. N. Mischenko
  • M. P. Nikitin
  • M. A. Polikarpov
  • V. Y. Panchenko
Article
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015

Abstract

Biodegradation of a 57Fe3O4 - based dextran - stabilized ferrofluid in the ventricular cavities of the rat brain was studied by X-ray diffraction and Mössbauer spectroscopy. A two-step process of biodegradation, consisting of fast disintegration of the initial composite magnetic beads into separate superparamagnetic nanoparticles and subsequent slow dissolution of the nanoparticles has been found. Joint fitting of the couples of Mössbauer spectra measured at different temperatures in the formalism of multi-level relaxation model with one set of fitting parameters, allowed us to measure concentration of exogenous iron in the rat brain as a function of time after the injection of nanoparticles.

Keywords

Mössbauer spectroscopy X-ray diffraction Superparamagnetic nanoparticles Brain Biodegradation 

References

  1. 1.
    Pankhurst, Q.A., et al: Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 42, 224001 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Krishnan, K.M.: Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn 46, 2523–2558 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–12147 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Hershko, C., Link, G., Cabantchik, I.: Pathophysiology of iron overload. Ann. N.Y. Acad. Sci. 850, 191–201 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    St. Pierre, T.G., et al.: Multicenter validation of spin-density projection-assisted r2-MRI for the noninvasive measurement of liver iron concentration. Magn. Reson. Med. 71, 2215–2223 (2014)CrossRefGoogle Scholar
  6. 6.
    St. Pierre, T.G., et al.: Iron overload diseases: the chemical speciation of non-heme iron deposits in iron loaded mammalian tissues. Hyperfine Interact. 126, 75–81 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Chertok, B.A., Moffat, A.E., et al.: Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Bio- materials 29(4), 487–496 (2008)Google Scholar
  8. 8.
    Zainulabedin, M.S., Nimisha, H.G., Madhavan, P.N.: Magnetic nanoformulation of azidothymidine 5-triphosphate for targeted delivery across the blood–brain barrier. Int. J. Nanomed. 5, 157–166 (2010)Google Scholar
  9. 9.
    Riviere, C., Martina, M.S., Riviere, C., et al.: Magneting targeting of nanometric magnetic fluid loaded liposomes to specific brain intravascular areas: a dynamic imaging study in mice. Radiology 244, 439–448 (2007)CrossRefGoogle Scholar
  10. 10.
    Jain, S., Mishra, V., Singh, P., Dubey, P.K., Saraf, D.K., Vyas, S.P.: RGD-Anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int. J. Pharm. 261, 43–55 (2003)CrossRefGoogle Scholar
  11. 11.
    Liu, et al.: Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl. Acad. Sci 107(34), 15205–15210 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Polikarpov, D.M., Gabbasov, R.R., Cherepanov, V.M., Chuev, M.A., Korshunov, V.A., Nikitin, M.P., Deyev, S.M., Panchenko, V.Y.: Biodegradation of magnetic nanoparticles in rat brain studied by Mössbauer spectroscopy. IEEE Trans. Magn. 49, 436–439 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Polikarpov, D.M., Cherepanov, V.M., Gabbasov, R.R., Chuev, M.A., Mischenko, I.N., Korshunov, V.A., Panchenko, V.Y.: Efficiency analysis of clearance of two types of exogenous iron from the rat brain by Mössbauer spectroscopy. Hyperfine Interact. 218(1–3), 83–88 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Polikarpov, D., Cherepanov, V., Chuev, M., Gabbasov, R., Mischenko, I., Nikitin, M., Vereshagin, Y., Yurenia, A., Panchenko, V.: Mössbauer evidence of 57Fe3 O 4based ferrofluid biodegradation in the brain. Hyperfine Interact. 226, 421–430 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Nikitin, M.P., Shipunova, V.O., Deyev, S.M., Nikitin, P.I.: Biocomputing based on particle disassembly. Nat. Nanotechnol. 9(9), 716–722 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Polikarpov, D., Gabbasov, R., Cherepanov, V., Loginova, N., Loseva, E., Nikitin, M., Yurenia, A., Panchenko, V.: Mössbauer study of exogenous iron redistribution between the brain and the liver after administration of 57Fe3 O 4ferrofluid in the ventricle of the rat brain. J. Magn. Magn. Mater. 380, 78–84 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Chuev, M.A.: An efficient method of analysis of the hyperfine structure of gamma-resonance spectra using the Voigt profile. Doklady Phys. 56(6), 318–322 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Zachariasen, W.H.: Theory of X-ray Diffraction in Crystals. Willey, New York (1945)Google Scholar
  19. 19.
    Polikarpov, M., Trushin, I., Yakimov, S.: Temperature relaxation of a superferromagnetic state in dispersed hematite. J. Magn. Magn. Mater. 116, 372 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Mørup, S., Hansen, M.F., Frandsen, C.: Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182–190 (2010)CrossRefGoogle Scholar
  21. 21.
    Gabbasov, R.R., Polikarpov, M.A., Cherepanov, V.M., Chuev, M.A., Panchenko, V.Y.: Breaking of interparticle interaction in conjugates of magnetic nanoparticles injected into the mice. Hyperfine Interact. 206, 71–74 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Jones, D.H., Srivastava, K.K.P.: Many-state relaxation model for the Mössbauer spectra of superparamagnets. Phys. Rev. B 34, 7542–7548 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    Chuev, M. A.: Multi-level relaxation model for describing the Mössbauer spectra of single-domain particles in the presence of quadrupolar hyperfine interaction. J. Phys.: Condens. Matter 23, 426003 (11pp) (2011)ADSGoogle Scholar
  24. 24.
    Pankhurst, Q., Hautot, D., Khan, N., Dobson, J.: Increased levels of magnetic iron compounds in Alzheimer’s disease. J. Alzheimers Dis. 13(1), 49–52 (2009)Google Scholar
  25. 25.
    Kirschvink, J.L., Kobayashi-Kirschvink, A., Woodford, B.J.: Magnetite biomineralization in the human brain. Proc. Nat. Acad. Sci. 89, 7683–7687 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    Dunn, J.R., Fuller, M., Zoeger, J., Dobson, J., Heller, F., Hammann, J., Caine, E., Moskowitz, B.M.: Magnetic material in the human hippocampus. Brain Res. Bull. 36, 149–153 (1995)CrossRefGoogle Scholar
  27. 27.
    Dobson, J., Grassi, P.: Magnetic properties of human hippocampal tissue: Evaluation of artefact and contamination sources. Brain Res. Bull. 39, 255–259 (1996)CrossRefGoogle Scholar
  28. 28.
    Quintana, C., Lancin, M., Marchic, C., Pérez, M., Martin-Benito, J., Avila, J., Carrascosa, J.L.: Initial studies with high resolution TEM and electron energy loss spectroscopy studies of ferritin cores extracted from brains of patients with progressive supranuclear palsy and Alzheimer disease. Cell Mol. Biol. 46, 807–820 (2000)Google Scholar
  29. 29.
    Quintana, C., Cowley, J.M., Marhic, C.: Electron nanodiffraction and high-resolution electron microscopy studies of the structural and composition of physiological and pathological ferritin. J. Struct. Biol. 147, 166–178 (2004)CrossRefGoogle Scholar
  30. 30.
    Hautot, D., Pankhurst, Q.A., Khan, N., Dobson, J.: Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue. Proc. R. Soc. Lond. Ser. B 270, S62–S64 (2003)CrossRefGoogle Scholar
  31. 31.
    Brem, F., Hirt, A.M., Winkelhofer, M., Frei, K., Yonekawa, Y., Wieser, H.G., Dobson, J.: Magnetic iron compounds in the human brain: A comparison of tumour and hippocampal tissue. J. R. Soc. Interface 3(11), 833–841 (2006)CrossRefGoogle Scholar
  32. 32.
    Chuev, M.A.: On the shape of gamma-resonance spectra of ferrimagnetic nanoparticles under conditions of metamagnetism. JETP Lett. 98(8), 465–470 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Mischenko, I., et al.: Biodegradation of magnetic nanoparticles evaluated from Mössbauer and magnetization measurements. Hyperfine Interact. 219, 57–61 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • R. R. Gabbasov
    • 1
  • V. M. Cherepanov
    • 1
  • M. A. Chuev
    • 1
    • 2
  • A. A. Lomov
    • 2
  • I. N. Mischenko
    • 1
    • 2
  • M. P. Nikitin
    • 3
  • M. A. Polikarpov
    • 1
  • V. Y. Panchenko
    • 1
  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations