Hyperfine Interactions

, 237:73 | Cite as

Observation of photoexcitation of Fe-oxide grown on TiO2(100) by visible light irradiation

  • Taizo Kawauchi
  • Naoki Nagatsuka
  • Katsuyuki Fukutani
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015


Electronic excitation of materials is of fundamental and technological importance and interest in terms of photoinduced phase transition, photovoltaics, and photocatalysis. In the present study, photoexcitation of Fe2 O 3 epitaxially grown on rutile TiO2(100) was investigated with conversion electron Mössbauer spectroscopy (CEMS) under dominantly visible-light irradiation. 57Fe was deposited on the substrate at a substrate temperature of 973 K, and the resulting film was characterized by RHEED and XPS. After deposition of Fe on TiO2(100), it was found that Fe was oxidized to Fe 3+, and the structure was analyzed to be the rhombohedral phase of Fe2 O 3. While the CEMS spectrum without light irradiation showed a quadrupole splitting of 0.80 mm/s with an isomer shift of +0.25 mm/s, an additional component with a quadrupole splitting of 0.85 and an isomer shift of +0.67 mm/s was observed under light irradiation. The latter component corresponds to a reduced state of Fe at the octahedral site surrounded by oxygen atoms. The lifetime of this photoexcited state is discussed.


Photoexcitation Fe2O3 TiO2 Visible light CEMS 


  1. 1.
    Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    Morisaki, H., Hariya, M., Yazawa, K.: Anomalous photoresonanse of n-TiO2 electrode in a photoelectrochemical cell. Appl. Phys. Lett. 30, 7 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    Sakthievel, S., Janczarek, M, Kisch, H.: Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 108, 19384 (2004)CrossRefGoogle Scholar
  4. 4.
    Wang, X H, Li, J G, Kamiyama, H., Moriyoshi, Y., Ishigaki, T.: Wevelength-sensitive photocatalytic degradation of methyl orange in aquareous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B 110 (2006)Google Scholar
  5. 5.
    Lee, J Y, Park, J., Cho, J H: Electronic properties of N- and C-doped TiO2. Appl. Phys. Lett. 87, 011904 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Han, C, Pelaez, M., Likodimos, V., Kontos, A G, Falaras, P., O’Shea, K., Dionysiou, D D: Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B 107, 77 (2011)CrossRefGoogle Scholar
  7. 7.
    Litter, M I, Navío: Photocatalytic properties of iron-doped titania semiconductors. J. Photochem. Photobio. A 98, 171 (1996)CrossRefGoogle Scholar
  8. 8.
    Xia, Y., Yin, L.: Core-shell structured α-Fe -Fe2 O 3@TiO2 nanocomposites with improved photocatalytic activity in the visible lifgt region. Phys. Chem. Chem. Phys. 15, 18627 (2013)CrossRefGoogle Scholar
  9. 9.
    Iordanova, N., Dupuis, M., Rosso, K M: Charge transport in metal oxide: a theoretical study of hematite α-Fe2 O 3. J. Chem. Phys. 122, 144305 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Smestad, G P, Krebs, F C, Lampert, C M, Chopra, K L, Methew, X, Takakura, H: Reporting solar cell efficiencies in solar energy materials and solar cells. Solar Energy Matel. Solar Cells 92, 371 (2008)CrossRefGoogle Scholar
  11. 11.
    Diebold, U: The surface science of titanium dioxide. Surf Sci. Rep. 48, 53 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Muryn, C A, Hardman, R J, Crouch, J J, Raiker, G N, Thornton, G.: Step and point defect effects on TiO2(100) reactivity. Surf Sci. 251/252, 747 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Kunze, C., Torun, B., Giner, I, Grundmeier, G.: Surface chemistry and nonadecanoic acid adsorbate layers on TiO2(100) surfaces prepared at ambient conditions. Surf. Sci. 606, 1527 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Brudle, C R, Chuang, T J, Wandelt: Core valence level photoemission studies of iron oxide surfaces and the oxidation of iron. Surf. Sci. 68, 459 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    Kündig, W, Bömmel, H, Constabaris, Lindquist, R.H.: Some properties of supported small α-Fe2 O 3 particles determined eith the Mössbauer effect. Phys. Rev. 142, 327 (1966)ADSCrossRefGoogle Scholar
  16. 16.
    Gohy, C., Gérard, A., Grandjean, F.: Mössbauer study of wustite and mangano-wustite. Phys. Stat. Sol. (a) 74, 583 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    Glasscock, J A, Barnes, P R F, Plumb, I C, Bemdavid, A., Martin, P J: Structural, optical electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films 516, 1716 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Taizo Kawauchi
    • 1
  • Naoki Nagatsuka
    • 1
  • Katsuyuki Fukutani
    • 1
  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations