Advertisement

Hyperfine Interactions

, 237:33 | Cite as

Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: an example of Chelyabinsk LL5 meteorite

  • A. A. Maksimova
  • Z. Klencsár
  • M. I. OshtrakhEmail author
  • E. V. Petrova
  • V. I. Grokhovsky
  • E. Kuzmann
  • Z. Homonnay
  • V. A. Semionkin
Article
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2015), Hamburg, Germany, 13-18 September 2015

Abstract

The influence of the fit accuracy of the troilite component in the Mössbauer spectra of ordinary chondrites on the parameters obtained for other spectral components was evaluated using the Mössbauer spectrum of Chelyabinsk LL5 meteorite fragment with light lithology as a typical example. It was shown that with respect to the application of a usual sextet component where quadrupole interaction is taken into account in the first-order perturbation limit, substantial improvement of the spectrum fit can be achieved either by using the full Hamiltonian description of the troilite component or by its formal approximation with the superposition of three symmetric doublet components. Parameter values obtained for the main spectral components related to olivine and pyroxene were not sensitive to the fit of troilite component while parameters of the minor spectral components depended on the way of troilite component fitting.

Keywords

Mössbauer spectroscopy Chelyabinsk LL5 ordinary chondrite Mössbauer parameters Troilite 

References

  1. 1.
    Jarosewich, E.: Meteoritics 25, 323 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Verma, H.C., Rawat, A., Paliwal, B.S., Tripathi, R.P.: Hyperfine Interact. 142, 643 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Lipka, J., Sitek, J., Dekan, J., Degmová, J., Porubčan, V.: Hyperfine Interact. 218, 107 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Cadogan, J.M., Rebbouh, L., Mills, J.V.J., Bland, P.A.: Hyperfine Interact. 222, S91 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Galazka-Friedman, J., Szlachta, K., Karwowski, Ł., Woźniak, M.: Hyperfine Interact. 226, 593 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: Meteorit. Planet. Sci. 43, 941 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: Hyperfine Interact. 186, 61 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: Hyperfine Interact. 226, 559 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Maksimova A.A., Oshtrakh M.I., Petrova E.V., Grokhovsky V.I., Semionkin V.A.: Proceedings of the international conference Mössbauer spectroscopy in materials science 2014. In: Tuček, J., Miglierini, M. (eds.) AIP Conference Proceedings, vol. 1622, pp 24–29. Melville, New York (2014)Google Scholar
  10. 10.
    Maksimova, A.A., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A.: Hyperfine Interact. 230, 79 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Kruse, O., Ericsson, T.: Phys. Chem. Minerals 15, 509 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Kruse, O.: Am. Mineral. 75, 755 (1990)Google Scholar
  13. 13.
    Grandjean, F., Long, G.J., Hautot, D., Whitney, D.L.: Hyperfine Interact. 116, 105 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Forder, S.D., Bland, P.A., Galazka-Friedman, J., Urbanski, M., Gontarz, Z., Milczarek, M., Bakun-Czubarow, N.: Hyperfine Interact. C 5, 405 (2001)Google Scholar
  15. 15.
    Oshtrakh, M.I., Grokhovsky, V.I., Petrova, E.V., Larionov, M. Y. u., Goryunov, M.V., Semionkin, V.A.: J. Mol. Struct. 1044, 268 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Maksimova, A.A., Oshtrakh, M.I., Klencsár, Z., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Homonnay, Z., Semionkin, V.A.: J. Mol. Struct. 1073, 196 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Oshtrakh, M.I., Semionkin, V., Milder, O.B., Novikov, E.G.: J. Radioanal. Nucl. Chem. 281, 63 (2009)CrossRefGoogle Scholar
  18. 18.
    Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G.: Bull. Rus. Acad. Sci.: Phys. 74, 416 (2010)Google Scholar
  19. 19.
    Oshtrakh, M.I., Semionkin, V.A.: Spectrochim. Acta, Part A: Mol. Biomol. Spectroscopy 100, 78 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Klencsár, Z., Kuzmann, E., Vértes, A.: J. Radioanal. Nucl. Chem. 210, 105 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. A. Maksimova
    • 1
  • Z. Klencsár
    • 2
  • M. I. Oshtrakh
    • 1
    • 3
    Email author
  • E. V. Petrova
    • 1
  • V. I. Grokhovsky
    • 1
  • E. Kuzmann
    • 4
  • Z. Homonnay
    • 4
  • V. A. Semionkin
    • 1
    • 3
  1. 1.Department of Physical Techniques and Devices for Quality Control, Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussia
  2. 2.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Experimental Physics, Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussia
  4. 4.Institute of ChemistryEötvös Loránd UniversityBudapestHungary

Personalised recommendations