Hyperfine Interactions

, Volume 235, Issue 1–3, pp 13–20 | Cite as

The ASACUSA CUSP: an antihydrogen experiment

  • N. Kuroda
  • S. Ulmer
  • D. J. Murtagh
  • S. Van Gorp
  • Y. Nagata
  • M. Diermaier
  • S. Federmann
  • M. Leali
  • C. Malbrunot
  • V. Mascagna
  • O. Massiczek
  • K. Michishio
  • T. Mizutani
  • A. Mohri
  • H. Nagahama
  • M. Ohtsuka
  • B. Radics
  • S. Sakurai
  • C. Sauerzopf
  • K. Suzuki
  • M. Tajima
  • H. A. Torii
  • L. Venturelli
  • B. Wünschek
  • J. Zmeskal
  • N. Zurlo
  • H. Higaki
  • Y. Kanai
  • E. Lodi Rizzini
  • Y. Nagashima
  • Y. Matsuda
  • E. Widmann
  • Y. Yamazaki
Article

Abstract

In order to test CPT symmetry between antihydrogen and its counterpart hydrogen, the ASACUSA collaboration plans to perform high precision microwave spectroscopy of ground-state hyperfine splitting of antihydrogen atom in-flight. We have developed an apparatus (“cusp trap”) which consists of a superconducting anti-Helmholtz coil and multiple ring electrodes. For the preparation of slow antiprotons and positrons, Penning-Malmberg type traps were utilized. The spectrometer line was positioned downstream of the cusp trap. At the end of the beamline, an antihydrogen beam detector was located, which comprises an inorganic Bismuth Germanium Oxide (BGO) single-crystal scintillator housed in a vacuum duct and surrounding plastic scintillators. A significant fraction of antihydrogen atoms flowing out the cusp trap were detected.

Keywords

Antihydrogen CPT invariance Atomic beam Rydberg atom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Widmann, E., et al.: Lect. Notes Phys. 570, 528 (2001)CrossRefADSGoogle Scholar
  2. 2.
    Kuroda, N., et al.: Phys. Rev. ST Accel. Beams 15, 0247021 (2012)CrossRefGoogle Scholar
  3. 3.
    Gabrielse, G., et al.: Phys. Rev. Lett. 57, 2504 (1986)CrossRefADSGoogle Scholar
  4. 4.
    Lombardi, A.M., Pirkl, W., Bylinsky, Y.: . In: Proceedings of the 2001 Particle Accelerator Conference, Chicago, (IEEE, Piscataway, p. 585 (2001)Google Scholar
  5. 5.
    Kuroda, N., et al.: Phys. Rev. Lett. 94, 023401 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Mohri, A., et al.: Jpn. J. Appl. Phys. 37, 664 (1998)CrossRefADSGoogle Scholar
  7. 7.
    Huang, X.-P., et al.: Phys. Rev. Lett. 78, 875 (1997)CrossRefADSGoogle Scholar
  8. 8.
    Kuroda, N., et al.: Phys. Rev. Lett. 100, 203402 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Shibata, M., et al.: Rev. Sci. Instrum. 79, 015112 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Mills, A.P. Jr., Gullikson, E.M.: Appl. Phys. Lett. 49, 1121 (1986)CrossRefADSGoogle Scholar
  11. 11.
    Murtagh D.J., et al. to be publishedGoogle Scholar
  12. 12.
    Enomoto, Y., et al.: Phys. Rev. Lett. 105, 243401 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Gabrielse, G., et al.: Phys. Rev. Lett. 89, 213401 (2002)CrossRefADSGoogle Scholar
  14. 14.
    Kuroda, N., et al.: Nat. Commun. 5, 3089 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • N. Kuroda
    • 1
  • S. Ulmer
    • 2
  • D. J. Murtagh
    • 3
  • S. Van Gorp
    • 3
  • Y. Nagata
    • 3
    • 10
  • M. Diermaier
    • 4
  • S. Federmann
    • 5
  • M. Leali
    • 6
  • C. Malbrunot
    • 5
  • V. Mascagna
    • 6
  • O. Massiczek
    • 4
  • K. Michishio
    • 7
  • T. Mizutani
    • 1
  • A. Mohri
    • 8
  • H. Nagahama
    • 1
  • M. Ohtsuka
    • 1
  • B. Radics
    • 3
  • S. Sakurai
    • 9
  • C. Sauerzopf
    • 4
  • K. Suzuki
    • 4
  • M. Tajima
    • 1
  • H. A. Torii
    • 1
  • L. Venturelli
    • 6
  • B. Wünschek
    • 4
  • J. Zmeskal
    • 4
  • N. Zurlo
    • 6
  • H. Higaki
    • 9
  • Y. Kanai
    • 3
  • E. Lodi Rizzini
    • 6
  • Y. Nagashima
    • 7
  • Y. Matsuda
    • 1
  • E. Widmann
    • 4
  • Y. Yamazaki
    • 3
  1. 1.Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan
  2. 2.Ulmer Initiative Research UnitRIKENSaitamaJapan
  3. 3.Atomic Physics LaboratoryRIKENSaitamaJapan
  4. 4.Stefan Meyer Institut für Subatomare PhysikBoltzmangasse 3WienAustria
  5. 5.CERNGenèveSwitzerland
  6. 6.Dipartimento di Chimica e Fisica per l’Ingegneria e per i MaterialiUniversità di Brescia & Instituto Nazionale di Fisica NucleareBresciaItaly
  7. 7.Department of PhysicsTokyo University of ScienceTokyoJapan
  8. 8.Graduate School of Human and Environmental SciencesKyoto UniversityKyotoJapan
  9. 9.Graduate School of Advanced Science of MatterHiroshima UniversityHiroshimaJapan
  10. 10.Department of Applied PhysicsTokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations