Hyperfine Interactions

, Volume 235, Issue 1–3, pp 21–28 | Cite as

Antiproton cloud compression in the ALPHA apparatus at CERN

  • A. Gutierrez
  • M. D. Ashkezari
  • M. Baquero-Ruiz
  • W. Bertsche
  • C. Burrows
  • E. Butler
  • A. Capra
  • C. L. Cesar
  • M. Charlton
  • R. Dunlop
  • S. Eriksson
  • N. Evetts
  • J. Fajans
  • T. Friesen
  • M. C. Fujiwara
  • D. R. Gill
  • J. S. Hangst
  • W. N. Hardy
  • M. E. Hayden
  • C. A. Isaac
  • S. Jonsell
  • L. Kurchaninov
  • A. Little
  • N. Madsen
  • J. T. K. McKenna
  • S. Menary
  • S. C. Napoli
  • P. Nolan
  • K. Olchanski
  • A. Olin
  • P. Pusa
  • C. Ø. Rasmussen
  • F. Robicheaux
  • R. L. Sacramento
  • E. Sarid
  • D. M. Silveira
  • C. So
  • S. Stracka
  • J. Tarlton
  • T. D. Tharp
  • R. I. Thompson
  • P. Tooley
  • M. Turner
  • D. P. van der Werf
  • J. S. Wurtele
  • A. I. Zhmoginov
Article
  • 136 Downloads

Abstract

We have observed a new mechanism for compression of a non-neutral plasma, where antiprotons embedded in an electron plasma are compressed by a rotating wall drive at a frequency close to the sum of the axial bounce and rotation frequencies. The radius of the antiproton cloud is reduced by up to a factor of 20 and the smallest radius measured is ∼ 0.2 mm. When the rotating wall drive is applied to either a pure electron or pure antiproton plasma, no compression is observed in the frequency range of interest. The frequency range over which compression is evident is compared to the sum of the antiproton bounce frequency and the system’s rotation frequency. It is suggested that bounce resonant transport is a likely explanation for the compression of antiproton clouds in this regime.

Keywords

Antiprotons Rotating wall Compression Electrons Penning-Malmberg trap Non-neutral plasma Antihydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holzscheiter, M.H., Charlton, M., Nieto, M.M.: Phys. Rep. 402, 1–101 (2004)CrossRefADSGoogle Scholar
  2. 2.
    Andresen, G.B., et al.: Phys. Lett. B 685, 141 (2010)CrossRefADSGoogle Scholar
  3. 3.
    Andresen, G.B., et al.: Nature 468, 673 (2010)CrossRefADSGoogle Scholar
  4. 4.
    Andresen, G.B., et al.: Nat. Phys. 7, 558 (2011)CrossRefGoogle Scholar
  5. 5.
    Amole, C., et al.: Nature 483, 439 (2012)CrossRefADSGoogle Scholar
  6. 6.
    Dubin, D.H.E., O’Neil, T.M.: Rev. Mod. Phys. 71, 87 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Amoretti, M., et al.: Nature 419, 456 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Malmberg, J.H., Driscoll, C.F.: Phys. Rev. Lett. 44, 654 (1980)CrossRefADSGoogle Scholar
  9. 9.
    Eggleston, D.L., O’Neil, T.M., Malmberg, J.H.: Phys. Rev. Lett. 53, 982 (1984)CrossRefADSGoogle Scholar
  10. 10.
    Notte, J., Fajans, J.: Phys. Plasmas 1, 1123 (1994)CrossRefADSGoogle Scholar
  11. 11.
    Huang, X.-P., et al.: Phys. Plasmas 5, 1656 (1998)CrossRefADSGoogle Scholar
  12. 12.
    Huang, X.-P., et al.: Phys. Rev. Lett. 78, 875 (1997)CrossRefADSGoogle Scholar
  13. 13.
    Jonsell, S., et al.: J. Phys. B: At. Mol. Opt. Phys. 42, 215002 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Amole, C., et al.: Nucl. Instr. and Meth. A 735, 319 (2014)CrossRefADSGoogle Scholar
  15. 15.
    Gilson, E.P., Fajans, J.: Phys. Rev. Lett. 90, 015001 (2003)CrossRefADSGoogle Scholar
  16. 16.
    Fajans, J., et al.: Phys. Plasmas 15, 032108 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Andresen, G.B., et al.: Phys. Rev. Lett. 100, 203401 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Kuroda, N., et al.: Phys. Rev. Lett. 100, 203402 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Andresen, G.B., et al.: Rev. Sci. Inst. 80, 123701 (2009)CrossRefADSGoogle Scholar
  20. 20.
    Gabrielse, G., et al.: Phys. Rev. Lett. 63, 1360 (1989)CrossRefADSGoogle Scholar
  21. 21.
    Andresen, G.B., et al.: Phys. Rev. Lett. 106, 145001 (2011)CrossRefADSGoogle Scholar
  22. 22.
    Trivelpiece, A.W., Gould, R.W.: J. App. Phys. 30, 1784 (1959)CrossRefADSGoogle Scholar
  23. 23.
    Anderegg, F., et al.: Phys. Rev. Lett. 81, 4875 (1998)CrossRefADSGoogle Scholar
  24. 24.
    Wineland, D., Dehmelt, H.: Int. J. Mass Spectrom. Ion Phys. 16, 338 (1975)CrossRefADSGoogle Scholar
  25. 25.
    Brown, L.S., Gabrielse, G.: Rev. Mod. Phys. 58, 233 (1986)CrossRefADSGoogle Scholar
  26. 26.
    Kellerbauer, A., et al.: Phys. Rev. A 73, 062508 (2006)CrossRefADSGoogle Scholar
  27. 27.
    Isaac, C.A., et al.: Phys. Rev. Lett. 107, 033201 (2011)CrossRefADSGoogle Scholar
  28. 28.
    Deller, A., et al.: New. J. Phys. 16, 073028 (2014)CrossRefADSGoogle Scholar
  29. 29.
    Eggleston, D.L., O’Neil, T.M.: Phys. Plasmas 6, 2699 (1999)CrossRefADSGoogle Scholar
  30. 30.
    Greaves, R.G., Surko, C.M.: Phys. Plasmas 8, 1879 (2001)CrossRefADSGoogle Scholar
  31. 31.
    Eggleston, D.L., Carrillo, B.: Phys. Plasmas 9, 786 (2002)CrossRefADSGoogle Scholar
  32. 32.
    Eggleston, D.L., Carrillo, B.: Phys. Plasmas 10, 1308 (2003)CrossRefADSGoogle Scholar
  33. 33.
    Greaves, R.G., Moxom, J.M.: Phys. Plasmas 15, 072304 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Gutierrez
    • 1
  • M. D. Ashkezari
    • 2
  • M. Baquero-Ruiz
    • 3
  • W. Bertsche
    • 4
    • 5
  • C. Burrows
    • 6
  • E. Butler
    • 7
    • 8
  • A. Capra
    • 9
  • C. L. Cesar
    • 10
  • M. Charlton
    • 6
  • R. Dunlop
    • 2
  • S. Eriksson
    • 6
  • N. Evetts
    • 1
  • J. Fajans
    • 3
  • T. Friesen
    • 11
  • M. C. Fujiwara
    • 12
  • D. R. Gill
    • 12
  • J. S. Hangst
    • 11
  • W. N. Hardy
    • 1
  • M. E. Hayden
    • 2
  • C. A. Isaac
    • 6
  • S. Jonsell
    • 13
  • L. Kurchaninov
    • 12
  • A. Little
    • 3
  • N. Madsen
    • 6
  • J. T. K. McKenna
    • 12
  • S. Menary
    • 9
  • S. C. Napoli
    • 13
  • P. Nolan
    • 14
  • K. Olchanski
    • 12
  • A. Olin
    • 12
  • P. Pusa
    • 14
  • C. Ø. Rasmussen
    • 11
  • F. Robicheaux
    • 15
  • R. L. Sacramento
    • 10
  • E. Sarid
    • 16
  • D. M. Silveira
    • 10
  • C. So
    • 3
  • S. Stracka
    • 12
  • J. Tarlton
    • 7
  • T. D. Tharp
    • 11
  • R. I. Thompson
    • 17
  • P. Tooley
    • 4
  • M. Turner
    • 3
  • D. P. van der Werf
    • 6
  • J. S. Wurtele
    • 3
  • A. I. Zhmoginov
    • 3
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of PhysicsSimon Fraser UniversityBurnabyCanada
  3. 3.Department of PhysicsUniversity of California at BerkeleyBerkeleyUSA
  4. 4.School of Physics and AstronomyUniversity of ManchesterManchesterUK
  5. 5.The Cockcroft InstituteWarringtonUK
  6. 6.Department of Physics, College of ScienceSwansea UniversitySwanseaUK
  7. 7.Centre for Cold Matter, Imperial CollegeLondonUK
  8. 8.Physics Department, CERNGeneva 23Switzerland
  9. 9.Department of Physics and AstronomyYork UniversityTorontoCanada
  10. 10.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  11. 11.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  12. 12.TRIUMFVancouverCanada
  13. 13.Department of PhysicsStockholm UniversityStockholmSweden
  14. 14.Department of PhysicsUniversity of LiverpoolLiverpoolUK
  15. 15.Department of PhysicsPurdue UniversityWest LafayetteUSA
  16. 16.Department of Physics, NRCN-Nuclear Research Center NegevBeer ShevaIsrael
  17. 17.Department of Physics and AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations