Advertisement

Hyperfine Interactions

, Volume 233, Issue 1–3, pp 47–51 | Cite as

Numerical simulations of hyperfine transitions of antihydrogen

  • B. KolbingerEmail author
  • A. Capon
  • M. Diermaier
  • S. Lehner
  • C. Malbrunot
  • O. Massiczek
  • C. Sauerzopf
  • M. C. Simon
  • E. Widmann
Article

Abstract

One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

Keywords

Antihydrogen Hyperfine transitions Precision measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colladay, D., Alan Kostelecky, V.: Lorentz-violating extension of the standard model. Phys. Rev. D 58, 1–23 (1998)CrossRefGoogle Scholar
  2. 2.
    Juhasz, B., Widmann, E., Federmann, S.: Measurement of the ground-state hyperfine splitting of antihydrogen. J. Phys. Conf. Ser. 335, 012059 (2011)CrossRefADSGoogle Scholar
  3. 3.
    Widmann, E., Diermaier, M., Juhasz, B., et al.: Measurement of the hyperfine structure in a beam. Hyperfine Interact. 215, 1–8 (2013)CrossRefADSGoogle Scholar
  4. 4.
    Widmann, E., Eades, J., Hayano, R., et al.: Measurement of the Antihydrogen Hyperfine Structure, Letter of Intent for AD, CERN/SPSC 2003–009 (2003)Google Scholar
  5. 5.
    Mohr, P.J., Tylor, B., Newell, D.: CODATA Recommended Values of the Fundamental Physical Constants (2012)Google Scholar
  6. 6.
    Kusch, P., Hughes, V.W.: Atomic and Molecular Beam Spectroscopy, Handbuch der Physik XXXVII/1. Springer (1959)Google Scholar
  7. 7.
    Kuroda, N., et al.: A source of antihydrogen for in-flight hyperfine spectroscopy. Nat. Commun. 5, 3089 (2014)CrossRefADSGoogle Scholar
  8. 8.
    Federmann, S.: A Spin-Flip Cavity for Microwave Spectroscopy of Antihydrogen. PhD thesis, University of Vienna (2012)Google Scholar
  9. 9.
    Juhasz, B., Widmann, E.: Planned measurement of the ground-state hyperfine splitting of antihydrogen. Hyperfine Interact. 193, 305–311 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Enomoto, Y. et al.: Synthesis of cold antihydrogen in a Cusp trap. Phys. Rev. Lett. 105, 243401 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • B. Kolbinger
    • 1
    Email author
  • A. Capon
    • 1
  • M. Diermaier
    • 1
  • S. Lehner
    • 1
  • C. Malbrunot
    • 2
  • O. Massiczek
    • 1
  • C. Sauerzopf
    • 1
  • M. C. Simon
    • 1
  • E. Widmann
    • 1
  1. 1.Stefan Meyer Institute for Subatomic Physics, Austrian Academy of SciencesViennaAustria
  2. 2.CERNGeneva 23Switzerland

Personalised recommendations