Hyperfine Interactions

, Volume 228, Issue 1–3, pp 67–76 | Cite as

Towards a spin polarized antihydrogen beam

  • N. Kuroda
  • S. Ulmer
  • D. J. Murtagh
  • S. Van Gorp
  • Y. Nagata
  • M. Diermaier
  • S. Federmann
  • M. Leali
  • C. Malbrunot
  • V. Mascagna
  • O. Massiczek
  • K. Michishio
  • T. Mizutani
  • A. Mohri
  • H. Nagahama
  • M. Ohtsuka
  • B. Radics
  • S. Sakurai
  • C. Sauerzopf
  • K. Suzuki
  • M. Tajima
  • H. A. Torii
  • L. Venturelli
  • B. Wünschek
  • J. Zmeskal
  • N. Zurlo
  • H. Higaki
  • Y. Kanai
  • E. Lodi-Rizzini
  • Y. Nagashima
  • Y. Matsuda
  • E. Widmann
  • Y. Yamazaki
Article

Abstract

The ASACUSA collaboration has developed a cusp trap scheme to realize an in-flight high precision microwave spectroscopy of ground-state hyperfine splitting of antihydrogen ( H̄) for a stringent test of CPT symmetry. Cold H̄ atoms were successfullysynthesized by employing a cusp trap which consisted of a superconducting anti-Helmholtz coil and a stack of ring electrodes. This was achieved with an antiproton ( p̄) accumulator, MUSASHI, and a positron ( e+) accumulator. The principal quantum number and the time evolution of H̄ synthesis were investigated. The latest progress was also presented.

Keywords

Antihydrogen CPT invariance Atomic beam Rydberg atom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andresen, G.B., et al.: Nature 468, 673 (2010)CrossRefADSGoogle Scholar
  2. 2.
    Gabrielse, G.: Phys. Rev. Lett. 108, 113002 (2012)CrossRefADSGoogle Scholar
  3. 3.
    Andresen, G.B., et al.: Nature Phys. 8, 558 (2011)CrossRefADSGoogle Scholar
  4. 4.
    Widmann, E., et al.: Lect. Notes Phys. 570, 528 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Parthy, C.G., et al.: Phys. Rev. Lett. 107, 203002 (2011)ADSGoogle Scholar
  6. 6.
    Ramsay, N.F.: Atomic hydrogen hyperfine structure experiments. In: Kinoshita, T. (ed.) Quantum Electrodynamics, pp. 673–695. World Scientific, Singapore (1990)Google Scholar
  7. 7.
    Eides, M.I., Grotch, H., Shelyuto, V.A.: Phys. Rep. 342, 63 (2001)CrossRefMATHADSGoogle Scholar
  8. 8.
    Mohri, A., Yamazaki, Y.: Europhys. Lett. 63, 207 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Enomoto, Y., et al.: Phys. Rev. Lett. 105, 243401 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Juhàsz, B.: Hyperfine Interact. 212, 69 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Kuroda, N., et al.: Phys. Rev. ST Accel. Beams 15, 0247021 (2012)Google Scholar
  12. 12.
    Imao, H., et al.: Hyperfine Interact. 194, 71 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Lombardi, A.M., Pirkl, W., Bylinsky, Y.: In: Proceedings of the 2001 Particle Accelerator Conference, p. 585. IEEE, Chicago, Piscataway (2001)Google Scholar
  14. 14.
    Kuroda, N., et al.: Phys. Rev. Lett. 94, 023401 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Kuroda, N., et al.: Phys. Rev. Lett. 100, 203402 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Shibata, M., et al.: Rev. Sci. Instrum. 79, 015112 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Saitoh, H., et al.: Phys. Rev. A 77, 051403(R) (2008)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Gabrielse, G., et al.: Phys. Rev. Lett. 89, 213401 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Gallagher, T.F.: Rydberg Atoms. Cambridge University Press, New York (1994)CrossRefGoogle Scholar
  20. 20.
    Kuroda, N., et al.: Hyperfine Interact. 209, 35 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Beck, B.R., et al.: Phys. Rev. Lett. 68, 317 (1992)CrossRefADSGoogle Scholar
  22. 22.
    Malbrunot, C., et al.: Spectroscopy apparatus for the measurement of the hyperfine structure of antihydrogen. In this proceedingsGoogle Scholar
  23. 23.
    Murtagh, D.J., et al.: to be submittedGoogle Scholar
  24. 24.
    Mills, A.P. Jr., Gullikson, E.M.: Appl. Phys. Lett. 49, 1121 (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • N. Kuroda
    • 1
  • S. Ulmer
    • 2
  • D. J. Murtagh
    • 2
  • S. Van Gorp
    • 2
  • Y. Nagata
    • 2
  • M. Diermaier
    • 3
  • S. Federmann
    • 4
  • M. Leali
    • 5
  • C. Malbrunot
    • 3
  • V. Mascagna
    • 5
  • O. Massiczek
    • 3
  • K. Michishio
    • 6
  • T. Mizutani
    • 1
  • A. Mohri
    • 2
  • H. Nagahama
    • 1
  • M. Ohtsuka
    • 1
  • B. Radics
    • 2
  • S. Sakurai
    • 7
  • C. Sauerzopf
    • 3
  • K. Suzuki
    • 3
  • M. Tajima
    • 1
  • H. A. Torii
    • 1
  • L. Venturelli
    • 5
  • B. Wünschek
    • 3
  • J. Zmeskal
    • 3
  • N. Zurlo
    • 5
  • H. Higaki
    • 7
  • Y. Kanai
    • 2
  • E. Lodi-Rizzini
    • 5
  • Y. Nagashima
    • 6
  • Y. Matsuda
    • 1
  • E. Widmann
    • 3
  • Y. Yamazaki
    • 1
    • 2
  1. 1.Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan
  2. 2.RIKEN Advanced Science InstituteSaitamaJapan
  3. 3.Stefan Meyer Institut für Subatomare PhysikWienAustria
  4. 4.CERNGenèveSwitzerland
  5. 5.Dipartimento di Chimica e Fisica per l’Ingegneria e per i MaterialiUniversità di Brescia & Instituto Nazionale di Fisica NucleareBresciaItaly
  6. 6.Department of PhysicsTokyo University of ScienceTokyoJapan
  7. 7.Graduate School of Advanced Science of MatterHiroshima UniversityHiroshimaJapan
  8. 8.CERNGenève 23Switzerland

Personalised recommendations