Hyperfine Interactions

, Volume 226, Issue 1–3, pp 421–430

Mössbauer evidence of 57Fe3O4 based ferrofluid biodegradation in the brain

  • D. Polikarpov
  • V. Cherepanov
  • M. Chuev
  • R. Gabbasov
  • I. Mischenko
  • M. Nikitin
  • Y. Vereshagin
  • A. Yurenia
  • V. Panchenko
Article

Abstract

The ferrofluid, based on 57Fe isotope enriched Fe3O4 nanoparticles, was synthesized, investigated by Mössbauer spectroscopy method and injected transcranially in the ventricle of the rat brain. The comparison of the Mössbauer spectra of the initial ferrofluid and the rat brain measured in two hours and one week after the transcranial injection allows us to state that the synthesized magnetic 57Fe3O4 nanoparticles undergo intensive biodegradation in live brain and, therefore, they can be regarded as a promising target for a new method of radionuclide-free Mössbauer brachytherapy.

Keywords

Mössbauer spectroscopy Magnetic nanoparticles Brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, Y., Sozontov, E., Safronov, V., Gutman, G., Strumban, E., Jiang, Q., Li, S.: 3D polymer gel dosimetry and Geant4 Monte Carlo characterization of novel needle based X ray source. J. Phy.: Conf. Ser. 250, 012069 (2010)Google Scholar
  2. 2.
    Le Duc, G., Miladi, I., Alric, C., Mowat, P., Brauer Krisch, E., Bouchet, A., Khalil, E., Billotey, C., Janier, M., Lux, F., Epicier, T., Perriat, P., Roux, S., Tillement, O.: Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano. 5(12), 9566–9574 (2011). doi:10.1021/nn202797h CrossRefGoogle Scholar
  3. 3.
    Mills, R.L., Walter, C.W., Venkataraman, L., Pang, K., Farrell, J.J.: A novel cancer therapy using a Mössbauer-isotope compound. Nature 336, 787–789 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Brenner, D.J., Geard, C.R., Hall, E.J.: Mössbauer cancer therapy doubts. Nature 339, 185–186 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    Polikarpov, D.M., Cherepanov, V.M., Gabbasov, R.R., Chuev, M.A., Mischenko, I.N., Korshunov, V.A., Panchenko, V.Y.: Efficiency analysis of clearance of two types of exogenous iron from the rat brain by Mössbauer spectroscopy. Hyperfine Interact. 218(1–3), 83–88 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Thrane, N., Trumpy, G.: Spin-spin relaxation and Karyagin-Goldanskii effect in FeCl3·6H2O. Phys. Rev. B 1(11), 153–155 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    Hazony, Y., Hang Nam, Ok.: 3d density distribution and crystal field in FeCl2: A Mössbauer study. Phys. Rev. 188(2), 591–593 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    Ganguly, B., Muggins, F., Feng, Z., Huffman, G.: Anomalous recoilless fraction of 30-A-diameter FeOOH particles. Phys. Rev. B 49(5), 3036–3042 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Machala, L., Tucek, J., Zboril, R.: Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 23, 3255–3272 (2011)CrossRefGoogle Scholar
  10. 10.
    Gabbasov, R.R., Cherepanov, V.M., Chuev, M.A., Polikarpov, M.A., Nikitin, M.P., Deyev, S.M., Panchenko, V.Y.: Biodegradation of magnetic nanoparticles in mouse liver from combined analysis of Mössbauer and magnetization data. IEEE Trans. Magn. 49(1), 394–397 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Chuev, M.A., Hesse, J.: Non-equilibrium magnetism of single-domain particles for characterization of magnetic nanomaterials. In: Tamayo, K.B. (ed.) Magnetic Properties of Solids, pp. 1–104. Nova Science Publishers, New York (2009)Google Scholar
  12. 12.
    Wickman, H.H.: Mössbauer effect methodology. In: Gruverman, I.J. (ed.) v.2, Plenum Press, New York (1966)Google Scholar
  13. 13.
    Néel, L.: Theory of the magnetic after-effect in ferromagnetics in the form of small particles, with applications to baked clays. Ann. Géophys. 5, 99 (1949)Google Scholar
  14. 14.
    Jones, D.H., Srivastava, K.K.P.: Many-state relaxation model for the Mössbauer spectra of superparamagnets. Phys. Rev. B34, 7542–7548 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    Chuev, M.A.: Mössbauer spectra of magnetic nanoparticles in the model of continuous diffusion and precession of uniform magnetization. JETP Lett. 83(12), 572–577 (2006)CrossRefGoogle Scholar
  16. 16.
    Chuev, M.A.: On the shape of gamma_resonance spectra of ferrimagnetic nanoparticles under conditions of metamagnetism. JETP Lett. 98(8), 465–470 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Chuev, M.A.: Multi-level relaxation model for describing the Mössbauer spectra of single-domain particles in the presence of quadrupolar hyperfine interaction. J. Phys. Condens. Matter. 23, 426003 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Nikitin, M., Gabbasov, R., Cherepanov, V., Chuev, M., Polikarpov, M., Panchenko, V., Deyev, S.: Magnetic nanoparticle degradation in vivo studied by Mössbauer spectroscopy. Am. Inst. Phys. Conf. Proc. Ser. 1311, 401–407 (2010)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • D. Polikarpov
    • 1
  • V. Cherepanov
    • 1
  • M. Chuev
    • 3
  • R. Gabbasov
    • 1
  • I. Mischenko
    • 3
  • M. Nikitin
    • 4
  • Y. Vereshagin
    • 1
  • A. Yurenia
    • 1
    • 2
  • V. Panchenko
    • 1
    • 2
  1. 1.National Research Centre, Kurchatov InstituteMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  4. 4.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations