Advertisement

Hyperfine Interactions

, Volume 226, Issue 1–3, pp 111–122 | Cite as

Macroscopic quantum effects observed in Mössbauer spectra of antiferromagnetic nanoparticles

  • Mikhail A. Chuev
Article

Abstract

The 57Fe Mössbauer spectra of antiferromagnetic nanoparticles have been measured for almost half a century and often displayed a specific (non-superparamagnetic) temperature evolution of the spectral shape which looks like a quantum superposition of well-resolved magnetic hyperfine structure and single line or quadrupolar doublet of lines with the temperature-dependent partial spectral areas. We have developed a quantum-mechanical model for describing thermodynamic characteristics of an ensemble of ideal and “uncompensated” antiferromagnetic nanoparticles with uniaxial magnetic anisotropy in the first approximation of slowly relaxing macrospins of magnetic sublattices. This model allows one to qualitatively describe the macroscopic quantum effects observed in the Mössbauer spectra and to clarify principally the difference in thermodynamic properties of ferromagnetic and antiferromagnetic particles revealed in spectroscopic measurements.

Keywords

Antiferromagnetic nanoparticles Mössbauer spectroscopy Magnetic dynamics Macroscopic quantum phenomena 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kündig, W., Bömmel, H., Constabaris, G., Lindquist, R.H.: Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect. Phys. Rev. 142, 327–333 (1966)CrossRefADSGoogle Scholar
  2. 2.
    Mørup, S., Topsøe, H., Lipka, J.: Modified theory for Mössbauer spectra of superparamagnetic particles. J. Phys. Colloq. 37(C6), 287–290 (1976)CrossRefGoogle Scholar
  3. 3.
    Chuev, M.A., Hesse, J.: Non-Equilibrium magnetism of single-domain particles for characterization of magnetic nanomaterials. In: Tamayo, K.B. (ed.) Magnetic Properties of Solids, pp. 1–104. Nova Science Publishers, New York (2009)Google Scholar
  4. 4.
    Papaefthymiou, G.C.: The Mössbauer and magnetic properties of ferritin cores. Biochim. Biophys. Acta 1800, 886–897 (2010)CrossRefGoogle Scholar
  5. 5.
    Chuev, M.A.: On the mechanism of the temperature evolution of the symmetric magnetic hyperfine structure of Mössbauer spectra of magnetic nanoparticles to the quadrupolar doublet of lines. JETP Lett. 94, 288–293 (2011)CrossRefADSGoogle Scholar
  6. 6.
    Chuev, M.A.: Multi-level relaxation model for describing the Mössbauer spectra of single-domain particles in the presence of quadrupolar hyperfine interaction. J. Phys. Condens. Matter 23(426003), 1–11 (2011)Google Scholar
  7. 7.
    Néel, L.: Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5, 99–136 (1949)Google Scholar
  8. 8.
    Jones, D.H., Srivastava, K.K.P.: Many-state relaxation model for the Mössbauer spectra of superparamagnets. Phys. Rev. B 34, 7542–7548 (1986)CrossRefADSGoogle Scholar
  9. 9.
    Chuev, M.A.: Mössbauer spectra of single-domain particles in a weak magnetic field. J. Phys. Condens. Matter 20(505201), 1–10 (2008)Google Scholar
  10. 10.
    Chuev, M.A.: Multilevel relaxation model for describing the Mössbauer spectra of nanoparticles in a magnetic field. JETP 114, 609–630 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Van Lierop, J., Ryan, D.H.: Mössbauer spectra of single-domain fine particle systems described using a multi-level relaxation model for superparamagnets. Phys. Rev. B 63(064406), 1–8 (2001)Google Scholar
  12. 12.
    Chuev, M.A., Cherepanov, V.M., Polikarpov, M.A.: On the shape of the gamma-resonance spectra of slowly relaxing nanoparticles in a magnetic field. JETP Lett. 92, 21–27 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Mischenko, I.N., Chuev, M.A., Cherepanov, V.M., Polikarpov, M.A., Panchenko, V.Ya.: Biodegradation of magnetic nanoparticles evaluated from Mössbauer and magnetization measurements. Hyperfine Interact. 219, 57–61 (2013)CrossRefADSGoogle Scholar
  14. 14.
    Gilles, C., Bonville, P., Rakoto, H., Broto, J.M., Wong, K.K.W., Mann, S.: Magnetic hysteresis and superantiferromagnetism in ferritin nanoparticles. J. Magn. Magn. Mater. 241, 430–440 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Madsen, D.E., Hansen, M.F., Bendix, J., Mørup, S.: On the analysis of magnetization and Mössbauer data for ferritin. Nanotechnology 19(315712), 1–7 (2008)Google Scholar
  16. 16.
    Suzdalev, I.P., Maksimov, Yu.V., Imshennik, V.K., Novichikhin, S.V., Matveev, V.V., Gudilin, E.A., Petrova, O.V., Tret’yakov, Yu.D., Chuev, M.A.: Magnetic phase transitions in nanostructures with different cluster orderings. Nanotechnol. Russia 4, 467–474 (2009)CrossRefGoogle Scholar
  17. 17.
    Chuev, M.A.: On the thermodynamics of antiferromagnetic nanoparticles by example of Mössbauer spectroscopy. JETP Lett. 95, 295–301 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Chuev, M.A.: The role of an uncompensated spin in the formation of a hyperfine structure of the Mössbauer spectra of antiferromagnetic nanoparticles. Dokl. Phys. 57, 421–426 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Chuev, M.A.: Thermodynamics of antiferromagnetic nanoparticles and macroscopic quantum effects observed by Mössbauer spectroscopy. Proc. SPIE 8700(0F), 1–12 (2012)Google Scholar
  20. 20.
    Néel, L.: Superantiferromagnetism in small particles. C. R. Acad. Sci. 253, 203–208 (1961)Google Scholar
  21. 21.
    Gilles, C., Bonville, P., Wong, K.K.W., Mann, S.: Non-Langevin behavior of the uncompensated magnetization in nanoparticles of artificial ferritin. Eur. Phys. J. B. 17, 417–427 (2000)CrossRefADSGoogle Scholar
  22. 22.
    Bødker, F., Hansen, M.F., Koch, C.B., Lefmann, K., Mørup, S.: Magnetic properties of hematite nanoparticles. Phys. Rev. B 61, 6826–6838 (2000)CrossRefADSGoogle Scholar
  23. 23.
    Silva, N.J.O., Millán, A., Palacio, F., Kampert, E., Zeitler, U., Rakoto, H., Amaral, V.S.: Temperature dependence of antiferromagnetic susceptibility in ferritin. Phys. Rev. B 79(104405), 1–5 (2009)Google Scholar
  24. 24.
    Barbara, B., Chudnovsky, E.M.: Macroscopic quantum tunneling in antiferromagnets. Phys. Lett. A 145, 205–208 (1990)CrossRefADSGoogle Scholar
  25. 25.
    Nie, Y.-H., Zhang, Y.-B., Liang, J.-Q., Müller-Kirsten, H.J.W., Pu, F.-C.: Macroscopic quantum coherence in small antiferromagnetic particles and quantum interference effects. Physica B 270, 95–103 (1999)CrossRefADSGoogle Scholar
  26. 26.
    Kodama, R.H., Berkowitz, A.E.: Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321–6336 (1999)CrossRefADSGoogle Scholar
  27. 27.
    Brown, Jr., W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963)CrossRefADSGoogle Scholar
  28. 28.
    Zheng, X.G., Xu, C.N., Nishikubo, K., Nishiyama, K., Higemoto, W., Moon, W.J., Tanaka, E., Otabe, E.S.: Finite size effects on Néel temperature in antiferromagnetic nanoparticles. Phys. Rev. B 72(014464), 1–8 (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations