Hyperfine Interactions

, Volume 225, Issue 1–3, pp 173–182 | Cite as

β-NMR

Article

Abstract

The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li +  ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2–200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3–300 K) and magnetic fields (0–9 T).

Keywords

β-NMR Nuclear magnetic resonance Radioactive beam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abragam, A.: Principles of Nuclear Magnetism. Clarendon, Oxford (1961)Google Scholar
  2. 2.
    Morenzoni, E., Khasanov, R., Luetkens, H., Prokscha, T., Suter, A., Garifianov, N., Glckler, H., Birke, M., Forgan, E., Keller, H., Litterst, J., Ch. Niedermayer, Nieuwenhuys, G.: Low energy muons as probes of thin films and near surface regions. Physica B326, 196–204 (2003)ADSGoogle Scholar
  3. 3.
    Levy, C.D.P., Pearson, M.R., Morris, G.D., Chow, K.H., Hossain, M.D., Kiefl, R.F., Labb, R., Lassen, J., MacFarlane, W.A., Parolin, T.J., Saadaoui, H., Smadella, M., Song, Q., Wang, D.: Development of the collinear laser beam line at TRIUMF. Hyperfine Interact. 196, 287–294 (2010)CrossRefADSGoogle Scholar
  4. 4.
    Levy, C.D.P., Pearson, M.R., Kiefl, R.F., Mané, E., Morris, G.D., Voss, A.: Laser polarization facility. Hyperfine Interact (this issue). doi:10.1007/s10751-013-0896-4
  5. 5.
    Morris, G.D., MacFarlane, W.A., Chow, K.H., Salman, Z., Arseneau, D.J., Daviel, S., Hatakeyama, A., Kreitzman, S.R., Levy, C.D.P., Poutissou, R., Heffner, R.H., Elenewski, J.E., Greene, L.H., Kiefl, R.F.: Depth-controlled β-NMR of 8Li in a thin silver film. Phys. Rev. Lett. 93, 157601 (2004)CrossRefADSGoogle Scholar
  6. 6.
    Parolin, T.J.,1, Salman, Z., Chow, K.H., Song, Q., Valiani, J.,1, Saadaoui, H., OH́alloran, A., Hossain, M.D., Keeler, T.A., Kiefl, R.F., Kreitzman, S.R., Levy, C.D.P., Miller, R.I., Morris, G.D., Pearson, M.R., Smadella, M., Wang, D., Xu, M., MacFarlane, W.A.: High resolution β-NMR study of 8Li+ implanted in gold. Phys. Rev. B77, 214107 (2008)Google Scholar
  7. 7.
    Parolin, T.J., Salman, Z., Chakhalian, J., Q Song, K Chow, H., Hossain, M.D., Keeler, T.A., Kiefl, R.F., Kreitzman, S.R., Levy, C.D.P., Miller, R.I., Morris, G.D., Pearson, M.R., Saadaoui, H., Wang, D., MacFarlane, W.A.: Beta-NMR of isolated lithium in nearly ferromagnetic palladium. Phys. Rev. Lett. 98, 047601 (2007)CrossRefADSGoogle Scholar
  8. 8.
    Salman, Z., Wang, D., Chow, K.H., Hossain, M.D., Kreitzman, S.R., Keeler, T.A., Levy, C.D.P., MacFarlane, W.A., R.I. Miller, Morris, G.D., Parolin, T.J., Saadaoui, H., Smadella, M., Kiefl, R.F.: Phys. Rev. Lett. 98, 167001 (2007)Google Scholar
  9. 9.
    Salman, Z., Reynard, E.P., MacFarlane, W.A., Chow, K.H., Chakhalian, J., Kreitzman, S.R., Daviel, S., Levy, C.D.P., Poutissou, R., Kiefl, R.F.: β-detected nuclear quadrupole resonance with a low-energy beam of 8Li + . Phys. Rev. B70, 104404 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Salman, Z., Kiefl, R.F., Chow, K.H., MacFarlane, W.A., Kreitzman, S.R., Arseneau, D.J., Daviel, S., Levy, C.D.P. Maeno, Y., Poutissou, R.: Beta-detected NQR in zero field with a low energy beam of 8Li + . Physica B374–375, 468–471 (2006)Google Scholar
  11. 11.
    Voss, A., Pearson, M.R., Billowes, J., Buchinger, F., Chow, K.H., Crawford, J.E., Hossein, M.D., Kiefl, R.F., C.D.P. Levy, MacFarlane, W.A., Mane, E., Morris, G.D., Parolin, T.J., Saadaoui, H., Salman, Z., Smadella, M., Song, Q., Wang, D.: The development of pure -NQR techniques for measurements of nuclear ground state quadrupole moments in lithium isotopes. J. Phys. Conf. Ser. 312, 092063 (2011)Google Scholar
  12. 12.
    Hossain, M.D., Salman, Z., Wang, D., Chow, K.H., Kreitzman, S., Keeler, T.A., Levy, C.D.P., MacFarlane, W.A., Miller, R.I., Morris, G.D., Parolin, T.J., Pearson, M., Saadaoui, H., Kiefl, R.F.: Low-field cross spin relaxation of 8Li in superconducting NbSe@. Phys. Rev. B79, 144518 (2009)ADSGoogle Scholar
  13. 13.
    Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: Nucl. Instrum. Methods Phys. Res. B268, 1818 (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre for Molecular and Materials Science, TRIUMFVancouverCanada

Personalised recommendations